964 resultados para Biomass fuel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, concern has arisen over the effects of increasing carbon dioxide (CO2) in the earth's atmosphere due to the burning of fossil fuels. One way to mitigate increase in atmospheric CO2 concentration and climate change is carbon sequestration to forest vegeta-tion through photosynthesis. Comparable regional scale estimates for the carbon balance of forests are therefore needed for scientific and political purposes. The aim of the present dissertation was to improve methods for quantifying and verifying inventory-based carbon pool estimates of the boreal forests in the mineral soils. Ongoing forest inventories provide a data based on statistically sounded sampling for estimating the level of carbon stocks and stock changes, but improved modelling tools and comparison of methods are still needed. In this dissertation, the entire inventory-based large-scale forest carbon stock assessment method was presented together with some separate methods for enhancing and comparing it. The enhancement methods presented here include ways to quantify the biomass of understorey vegetation as well as to estimate the litter production of needles and branches. In addition, the optical remote sensing method illustrated in this dis-sertation can be used to compare with independent data. The forest inventory-based large-scale carbon stock assessment method demonstrated here provided reliable carbon estimates when compared with independent data. Future ac-tivity to improve the accuracy of this method could consist of reducing the uncertainties regarding belowground biomass and litter production as well as the soil compartment. The methods developed will serve the needs for UNFCCC reporting and the reporting under the Kyoto Protocol. This method is principally intended for analysts or planners interested in quantifying carbon over extensive forest areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyperus iria is a weed of rice with widespread occurrence throughout the world. Because of concerns about excessive and injudicious use of herbicides, cultural weed management approaches that are safe and economical are needed. Developing such approaches will require a better understanding of weed biology and ecology, as well as of weed response to increases in crop density and nutrition. Knowledge of the effects of nitrogen (N) fertilizer on crop-weed competitive interactions could also help in the development of integrated weed management strategies. The present study was conducted in a screenhouse to determine the effects of rice planting density (0, 5, 10, and 20 plants pot−1) and N rate (0, 50, 100, and 150 kg ha−1) on the growth of C. iria. Tiller number per plant decreased by 73–88%, leaf number by 85–94%, leaf area by 85–98%, leaf biomass by 92–99%, and inflorescence biomass by 96–99% when weed plants were grown at 20 rice plants pot−1 (i.e., 400 plants m−2) compared with weed plants grown alone. All of these parameters increased when N rates were increased. On average, weed biomass increased by 118–389% and rice biomass by 121–275% with application of 50–150 kg N ha−1, compared to control. Addition of N favored weed biomass production relative to rice biomass. Increased N rates reduced the root-to-shoot weight ratio of C. iria. Rice interference reduced weed growth and biomass and completely suppressed C. iria when no N was applied at high planting densities (i.e., 20 plants pot−1). The weed showed phenotypic plasticity in response to N application, and the addition of N increased the competitive ability of the weed over rice at densities of 5 and 10 rice plants pot−1 compared with 20 plants pot−1. The results of the present study suggest that high rice density (i.e., 400 plants m−2) can help suppress C. iria growth even at high N rates (150 kg ha−1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single pulse shock tube facility has been developed in the High Temperature Chemical Kinetics Lab, Aerospace Engineering Department, to carry out ignition delay studies and spectroscopic investigations of hydrocarbon fuels. Our main emphasis is on measuring ignition delay through pressure rise and by monitoring CH emission for various jet fuels and finding suitable additives for reducing the delay. Initially the shock tube was tested and calibrated by measuring the ignition delay of C2H6-O2 mixture. The results are in good agreement with earlier published works. Ignition times of exo-tetrahdyrodicyclopentadiene (C10H16), which is a leading candidate fuel for scramjet propulsion has been studied in the reflected shock region in the temperature range 1250 - 1750 K with and without adding Triethylamine (TEA). Addition of TEA results in substantial reduction of ignition delay of C10H16.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prescribed fire is one of the most widely-used management tools for reducing fuel loads in managed forests. However the long-term effects of repeated prescribed fires on soil carbon (C) and nitrogen (N) pools are poorly understood. This study aimed to investigate how different fire frequency regimes influence C and N pools in the surface soils (0–10 cm). A prescribed fire field experiment in a wet sclerophyll forest established in 1972 in southeast Queensland was used in this study. The fire frequency regimes included long unburnt (NB), burnt every 2 years (2yrB) and burnt every 4 years (4yrB), with four replications. Compared with the NB treatment, the 2yrB treatment lowered soil total C by 44%, total N by 54%, HCl hydrolysable C and N by 48% and 59%, KMnO4 oxidizable C by 81%, microbial biomass C and N by 42% and 33%, cumulative CO2–C by 28%, NaOCl-non-oxidizable C and N by 41% and 51%, and charcoal-C by 17%, respectively. The 4yrB and NB treatments showed no significant differences for these soil C and N pools. All soil labile, biologically active and recalcitrant and total C and N pools were correlated positively with each other and with soil moisture content, but negatively correlated with soil pH. The C:N ratios of different C and N pools were greater in the burned treatments than in the NB treatments. This study has highlighted that the prescribed burning at four year interval is a more sustainable management practice for this subtropical forest ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple method of calculating the elemental stoichiometric coefficient, φe has been developed, which can easily be applied to multicomponent fuel-oxidizer compositions. The method correctly predicts whether a mixture is fuel lean, fuel rich, or stoichiometrically balanced. The total composition of oxidizing (or reducing) elements of the mixture appears to be related to the thermochemistry of the system. For the reaction of ammonium perchlorate and an organic fuel the heat of reaction varies linearly with the total composition of oxidizing elements. The physical significance of such a correlation based on thermochemical reasoning is highlighted in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

India's energy challenges are multi-pronged. They are manifested through growing demand for modern energy carriers, a fossil fuel dominated energy system facing a severe resource crunch, the need for creating access to quality energy for the large section of deprived population, vulnerable energy security, local and global pollution regimes and the need for sustaining economic development. Renewable energy is considered as one of the most promising alternatives. Recognizing this potential, India has been implementing one of the largest renewable energy programmes in the world. Among the renewable energy technologies. bioenergy has a large diverse portfolio including efficient biomass stoves, biogas, biomass combustion and gasification and process heat and liquid fuels. India has also formulated and implemented a number of innovative policies and programmes to promote bioenergy technologies. However, according to some preliminary studies, the success rate is marginal compared to the potential available. This limited success is a clear indicator of the need for a serious reassessment of the bioenergy programme. Further, a realization of the need for adopting a sustainable energy path to address the above challenges will be the guiding force in this reassessment. In this paper an attempt is made to consider the potential of bioenergy to meet the rural energy needs: (I) biomass combustion and gasification for electricity; (2) biomethanation for cooking energy (gas) and electricity; and (3) efficient wood-burning devices for cooking. The paper focuses on analysing the effectiveness of bioenergy in creating this rural energy access and its sustainability in the long run through assessing: the demand for bioenergy and potential that could be created; technologies, status of commercialization and technology transfer and dissemination in India; economic and environmental performance and impacts: bioenergy policies, regulatory measures and barrier analysis. The whole assessment aims at presenting bioenergy as an integral part of a sustainable energy strategy for India. The results show that bioenergy technology (BET) alternatives compare favourably with the conventional ones. The cost comparisons show that the unit costs of BET alternatives are in the range of 15-187% of the conventional alternatives. The climate change benefits in terms of carbon emission reductions are to the tune of 110 T C per year provided the available potential of BETs are utilized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ageing behaviour of polystyrene (PS)/ammonium perchlorate (AP) propellent leading to ballistic changes has been studied. It follows a zero-order kinetic law. Ageing behaviour leading to change in burning rate ( ) in the temperature range of 60–200 ° C was found to remain the same. The dependence of the change of the average thermal decomposition (TD) rate at 230 and 260°C on the change in burning rate for the propellant aged at 100 ° C in air suggests that the slow TD of the propellant is the cause of ageing. The safe-life (for a pre-assigned burning-rate change limit) at 25 ° C in air has been calculated as a function of the rate of change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a simple technique for the fermentation of untreated or partly-treated leafy biomass in a digester of novel design without incurring the normal problems of feeding, floating and scum formation of feed, etc. The solid phase fermentation studied consists of a bed of biomass frequently sprinkled with an aqueous bacterial inoculum and recycling the leachate to conserve moisture and improve the bacterial dispersion in the bed. The decomposition of the leaf biomass and water hyacinth substrates used in this study was rapid, taking 45 and 30 days for the production of 250 and 235 l biogas per kg total solids (TS) respectively, for the above mentioned substrates at a daily sprinkled volume of 26 ml cm−2 of bed per day sprinkled at 12 h intervals. Very little volatile fatty acid (VFA) intermediates accumulated in the liquid sprinkled, suggesting acidogenesis to be rate-limiting in this process. From the pattern of VFA and gas produced it is concluded that most of the biogas produced is from the biomass bed, thus making the operation of a separate methanogenic reactor unnecessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct borohydride fuel cell (DBFC) employing a poly (vinyl alcohol)hydrogel membrane electrolyte (PHME) is reported. The DBFC employs an AB(5) Misch metal alloy as anode and a goldplated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous acidified solution of hydrogen peroxide as oxidant. Room temperature performances of the PHME-based DBFC in respect of peak power outputs; ex-situ cross-over of oxidant, fuel,anolyte and catholyte across the membrane electrolytes; utilization efficiencies of fuel and oxidant, as also cell performance durability are compared with a similar DBFC employing a NafionA (R)-117 membrane electrolyte (NME). Peak power densities of similar to 30 and similar to 40 mW cm(-2) are observed for the DBFCs with PHME and NME, respectively. The crossover of NaBH4 across both the membranes has been found to be very low. The utilization efficiencies of NaBH4 and H2O2 are found to be similar to 24 and similar to 59%, respectively for the PHME-based DBFC; similar to 18 and similar to 62%, respectively for the NME-based DBFC. The PHME and NME-based DBFCs exhibit operational cell potentials of similar to 1 center dot 2 and similar to 1 center dot 4 V, respectively at a load current density of 10 mA cm(-2) for similar to 100 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Pt-Au alloy catalyst of varying compositions is prepared by codeposition of Pt and Au nanoparticles onto a carbon support to evaluate its electrocatalytic activity toward an oxygen reduction reaction (ORR) with methanol tolerance in direct methanol fuel cells. The optimum atomic weight ratio of Pt to Au in the carbon-supported Pt-Au alloy (Pt-Au/C) as established by cell polarization, linear-sweep voltammetry (LSV), and cyclic voltammetry (CV) studies is determined to be 2:1. A direct methanol fuel cell (DMFC) comprising a carbon-supported Pt-Au (2:1) alloy as the cathode catalyst delivers a peak power density of 120 mW/cm2 at 70 °C in contrast to the peak power density value of 80 mW/cm2 delivered by the DMFC with carbon-supported Pt catalyst operating under identical conditions. Density functional theory (DFT) calculations on a small model cluster reflect electron transfer from Pt to Au within the alloy to be responsible for the synergistic promotion of the oxygen-reduction reaction on a Pt-Au electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 °C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm−2 at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm−2 at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm−2 at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm−2 at an operating voltage of 1 V.