947 resultados para Bio-inspired optimization techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

No contexto da previsão de séries temporais, é grande o interesse em estudos de métodos de previsão de séries temporais que consigam identificar as estruturas e padrões existentes nos dados históricos, possibilitando gerar os próximos padrões da série. A proposta defendida nesta tese é a de desenvolvimento de um framework que utilize ao máximo as potencialidades das técnicas de previsão (redes neurais artificiais) com as técnicas de otimização (algoritmos genéticos) em um sistema híbrido intercomunicativo que aproveite bem as vantagens de cada uma dessas técnicas para a geração de cenários futuros que possam mostrar, além das previsões normais com base nos valores históricos, percursos alternativos das curvas das séries temporais analisadas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Em sistemas híbridos de geração de eletricidade (SHGEs) é fundamental avaliar corretamente o dimensionamento, a operação e a gestão do sistema, de forma a evitar seu colapso prematuro e garantir a continuidade do fornecimento de energia elétrica com a menor intervenção possível de usuários ou de empresas geradoras e distribuidoras de eletricidade. O presente trabalho apresenta propostas de otimização para as etapas de dimensionamento, operação e gestão de SHGEs atendendo minirredes de distribuição de eletricidade. É proposta uma estratégia de operação que visa otimizar o despacho de energia do sistema, identificando a melhor relação, sob aspectos técnicos e econômicos, entre o atendimento da carga exclusivamente via fontes renováveis e banco de baterias ou exclusivamente via grupo gerador, e o carregamento do banco de baterias somente pelas fontes renováveis ou também pelo grupo gerador. Desenvolve-se, também, um algoritmo de dimensionamento de SHGEs, com auxílio de algoritmos genéticos e simulated annealing, técnicas meta-heurísticas de otimização, visando apresentar a melhor configuração do sistema, em termos de equipamentos que resultem na melhor viabilidade técnica e econômica para uma dada condição de entrada definida pelo usuário. Por fim, é proposto um modelo de gestão do sistema, considerando formas de tarifação e sistemas de controle de carga, cujo objetivo é garantir uma relação adequada entre a disponibilidade energética do sistema de geração e a carga demandada. A estratégia de operação proposta combina as estratégias de operação descontínua do grupo gerador, da potência crítica e do ponto otimizado de contribuição do gerador no carregamento do banco de baterias, e seus resultados indicam que há redução nos custos de operação globais do sistema. Com relação ao dimensionamento ótimo, o algoritmo proposto, em comparação a outras ferramentas de otimização de SHGEs, apresenta bons resultados, sendo adequado à realidade nacional. O modelo de gestão do sistema propõe o estabelecimento de limites de consumo e demanda, adequados à realidade de comunidades isoladas atendidas por sistemas com fontes renováveis e, se corretamente empregados, podem ajudar a garantir a sustentabilidade dos sistemas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Medical Physics has been developing very fast due to the progress of the technologies and to the increase of the concerns with cure of diseases. One of the Medical Physics main performances at the present time is the use of ionizing radiations for cancer treatment, especially, services as Radiotherapy. The radiotherapy technique uses ionizing radiation with therapeutic end of cancer controls, avoiding your proliferation and it worsens of the patient. For the treatment a radiation bunch is used, with rectangular form, that it passes through the different types of tissues of the patient's body, and depending on the attenuation and of the depth of the fabrics, a great amount of energy is deposited inside in different points of the body. Like this, to plan this treatment type it should be obtained the dimension of the distribution and dose absorption along the volume. For this, it is necessary in the planning of the treatment of the cancer for radiotherapy to build isodose curves, which are lines that represent points of same amount of dose to be deposited in the area to be treated. To aid the construction of the curves of form isodose to reach the best result in the planning of the treatment, in other words, a great planning, providing the maximum of dose in the tumor and saving the healthy and critical organs, it has been using mathematical tools and computational. A plan of cancer treatment for radiotherapy is considered great when all the parameters that involve the treatment, be them physical or biological, they were investigated and adapted individually for the patient. For that, is considered the type and the location of the tumor, worrying about the elimination of the cancer without damaging the healthy tissue of the treated area, mainly the risk organs, which are in general very sensitive to the radiations. This way, the optimization techniques... (Complete abstract click electronic access below)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a mixed-integer convex-optimization-based approach for optimum investment reactive power sources in transmission systems. Unlike some convex-optimization techniques for the reactive power planning solution, in the proposed approach the taps settings of under-load tap-changing of transformers are modeled as a mixed-integer linear set equations. Are also considered the continuous and discrete variables for the existing and new capacitive and reactive power sources. The problem is solved for three significant demand scenarios (low demand, average demand and peak demand). Numerical results are presented for the CIGRE-32 electric power system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, nanometric displacement amplitudes of a Piezoelectric Flextensional Actuator (PFA) designed using the topology optimization technique and operating in its linear range are measured by using a homodyne Michelson interferometer. A new improved version of the J1...J4 method for optical phase measurements, named J1...J5 method, is presented, which is of easier implementation than the original one. This is a passive phase detection scheme, unaffected by signal fading, source instabilities and changes in visibility. Experimental results using this improvement were compared with those obtained by using the J1... J4, J1...J6(pos) and J1...J 6(neg) methods, concluding that the dynamic range is increased while maintaining the sensitivity. Analysis based on the 1/f voltage noise and random fading show the new method is more stable to phase drift than all those methods. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, researches have shown that the performance of metaheuristics can be affected by population initialization. Opposition-based Differential Evolution (ODE), Quasi-Oppositional Differential Evolution (QODE), and Uniform-Quasi-Opposition Differential Evolution (UQODE) are three state-of-the-art methods that improve the performance of the Differential Evolution algorithm based on population initialization and different search strategies. In a different approach to achieve similar results, this paper presents a technique to discover promising regions in a continuous search-space of an optimization problem. Using machine-learning techniques, the algorithm named Smart Sampling (SS) finds regions with high possibility of containing a global optimum. Next, a metaheuristic can be initialized inside each region to find that optimum. SS and DE were combined (originating the SSDE algorithm) to evaluate our approach, and experiments were conducted in the same set of benchmark functions used by ODE, QODE and UQODE authors. Results have shown that the total number of function evaluations required by DE to reach the global optimum can be significantly reduced and that the success rate improves if SS is employed first. Such results are also in consonance with results from the literature, stating the importance of an adequate starting population. Moreover, SS presents better efficacy to find initial populations of superior quality when compared to the other three algorithms that employ oppositional learning. Finally and most important, the SS performance in finding promising regions is independent of the employed metaheuristic with which SS is combined, making SS suitable to improve the performance of a large variety of optimization techniques. (C) 2012 Elsevier Inc. All rights reserved.