962 resultados para Binding sites (Biochemistry)
Resumo:
Copia is a retrotransposon that appears to be distributed widely among the Drosophilidae subfamily. Evolutionary analyses of regulatory regions have indicated that the Copia retrotransposon evolved through both positive and purifying selection, and that horizontal transfer (HT) could also explain its patchy distribution of the among the subfamilies of the melanogaster subgroup. Additionally, Copia elements could also have transferred between melanogaster subgroup and other species of Drosophilidae-D. willistoni and Z. tuberculatus. In this study, we surveyed seven species of the Zaprionus genus by sequencing the LTR-ULR and reverse transcriptase regions, and by using RT-PCR in order to understand the distribution and evolutionary history of Copia in the Zaprionus genus. The Copia element was detected, and was transcriptionally active, in all species investigated. Structural and selection analysis revealed Zaprionus elements to be closely related to the most ancient subfamily of the melanogaster subgroup, and they seem to be evolving mainly under relaxed purifying selection. Taken together, these results allowed us to classify the Zaprionus sequences as a new subfamily-ZapCopia, a member of the Copia retrotransposon family of the melanogaster subgroup. These findings indicate that the Copia retrotransposon is an ancient component of the genomes of the Zaprionus species and broaden our understanding of the diversity of retrotransposons in the Zaprionus genus.
Resumo:
In most bacteria, the ferric uptake regulator (Fur) is a global regulator that controls iron homeostasis and other cellular processes, such as oxidative stress defense. In this work, we apply a combination of bioinformatics, in vitro and in vivo assays to identify the Caulobacter crescentus Fur regulon. A C. crescentus fur deletion mutant showed a slow growth phenotype, and was hypersensitive to H(2)O(2) and organic peroxide. Using a position weight matrix approach, several predicted Fur-binding sites were detected in the genome of C. crescentus, located in regulatory regions of genes not only involved in iron uptake and usage but also in other functions. Selected Fur-binding sites were validated using electrophoretic mobility shift assay and DNAse I footprinting analysis. Gene expression assays revealed that genes involved in iron uptake were repressed by iron-Fur and induced under conditions of iron limitation, whereas genes encoding iron-using proteins were activated by Fur under conditions of iron sufficiency. Furthermore, several genes that are regulated via small RNAs in other bacteria were found to be directly regulated by Fur in C. crescentus. In conclusion, Fur functions as an activator and as a repressor, integrating iron metabolism and oxidative stress response in C. crescentus.
Resumo:
Angiotensin II (Ang II) exerts an acute bimodal effect on proximal tubule NHE3: while low doses stimulate the exchanger, high doses inhibit it. In the present study, we have investigated the chronic effects of Ang II on NHE3 expression and transcriptional regulation. Treatment of a tubular epithelial cell line, OKP, with Ang II 10(-11) M significantly increased NHE protein expression and mRNA levels, without evidence of bimodal effect. No change in mRNA half-life was detected, but transient transfection studies showed a significant increase in NHE3 promoter activity. Binding sites for Sp1/Egr-1 and AP2 transcription factors of the NHE3 proximal promoter were mutated and we observed that the Sp1/Egr-1 binding site integrity is necessary for Ang II stimulatory effects. Inhibition of cytochrome P450, PI3K, PKA and MAPK pathways prevented the Ang II stimulatory effect on the NHE3 promoter activity. Taking all the results together, our data reveal that chronic Ang II treatment exerts a stimulatory effect on NHE3 expression and promoter activity. The Ang II up-regulation of the NHE3 promoter activity appears to involve the Sp1/Egr-1 binding site and the interplay of several intracellular signaling pathways. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H(2)O(2), and organic solvents. Thus, RPTP is a promising candidate for developing H(2)O(2)-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85 angstrom. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Tropomyosin (Tm) is a dimeric coiled-coil protein that polymerizes through head-to-tail interactions. These polymers bind along actin filaments and play an important role in the regulation of muscle contraction. Analysis of its primary structure shows that Tm is rich in acidic residues, which are clustered along the molecule and may from sites for divalent cation binding. In a previous study, we showed that the Mg(2+)-induced increase in stability of the C-terminal half of Tin is sensitive to imitations near the C-terminus. In the present report, we study the interaction between Mg(2+) and full-length Tin and smaller fragments corresponding to the last 65 and 26 Tin residues. Although the smaller Tin peptide (Tm(259-284(W269))) is flexible and to large extent unstructured, the larger Tm(220-284(W269)) fragments forms a coiled coil in solution whose stability increases significantly in the presence of Mg(2+). NMR analysis shows thin Mg(2+) induces chemical shift perturbations in both Tm(220-284(W269)) and Tm(259-284(W269)) in the vicinity of His276, in which are located several negatively charged residues. (C) 2009 Wiley Periodicals, Inc. Biopolymers 91: 583-590, 2009.
Resumo:
In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.
Resumo:
Regulation of chromosome inheritance is essential to ensure proper transmission of genetic information. To accomplish accurate genome segregation, cells organize their chromosomes and actively separate them prior to cytokinesis. In Bacillus subtilis the Spo0J protein is required for accurate chromosome segregation and it regulates the developmental switch from vegetative growth to sporulation. Spo0J is a DNA-binding protein that recognizes at least eight identified parS sites located near the origin of replication. As judged by fluorescence microscopy, Spo0J forms discrete foci associated with the oriC region of the chromosome throughout the cell cycle. In an attempt to determine the mechanisms utilized by Spo0J to facilitate productive chromosome segregation, we have investigated the DNA binding activity of Spo0J. In vivo we find Spo0J associates with several kilobases of DNA flanking its specific binding sites (parS) through a parS-dependent nucleation event that promotes lateral spreading of Spo0J along the chromosome. Using purified components we find that Spo0J has the ability to coat non-specific DNA substrates. These 'Spo0J domains' provide large structures near oriC that could potentially demark, organize or localize the origin region of the chromosome.
Resumo:
Aberrant methylation of seven potential binding sites of the CTCF factor in the differentially methylated region upstream of the H19 gene (H19-DMR) has been suggested as critical for the regulation of IGF2 and H19 imprinted genes. In this study, we analyzed the allele-specific methylation pattern of CTCF binding sites 5 and 6 using methylationsensitive restriction enzyme PCR followed by RFLP analysis in matched tumoral and lymphocyte DNA from head-and-neck squamous cell carcinoma (HNSCC) patients, as well as in lymphocyte DNA from control individuals who were cancer-free. The monoallelic methylation pattern was maintained in CTCF binding site 5 in 22 heterozygous out of 91 samples analyzed. Nevertheless, a biallelic methylation pattern was detected in CTCF binding site 6 in a subgroup of HNSCC patients as a somatic acquired feature of tumor cells. An atypical biallelic methylation was also observed in both tumor and lymphocyte DNA from two patients, and at a high frequency in the control group (29 out of 64 informative controls). Additionally, we found that the C/T transition detected by HhaI RFLP suppressed one dinucleotide CpG in critical CTCF binding site 6, of a mutation showing polymorphic frequencies. Although a heterogeneous methylation pattern was observed after DNA sequencing modified by sodium bisulfite, the biallelic methylation pattern was confirmed in 9 out of 10 HNSCCs. These findings are likely to be relevant in the epigenetic regulation of the DMR, especially in pathological conditions in which the imprinting of IGF2 and H19 genes is disrupted.
Resumo:
Loss of allele-specific expression by the imprinted genes IGF2 and H19 has been correlated with a differentially methylated region (DMR) upstream to the H19 gene. The H19-DMR contains seven potential CCCTC-binding factor (CTCF) binding sites. CTCF is a chromatin insulator and a multifunctional transcription factor whose binding to the H19-DMR is suppressed by DNA methylation. Our study included a group of 41 head and neck squamous cell carcinoma (HNSCC) samples. The imprinting status of the H19 gene was analyzed in 11 out of 35 positive cases for H19 gene expression, and only 1 of them showed loss of imprinting. We detected a significant correlation (P=0.041, Fisher's exact test) between H19 expression and tumor recurrence. Among H19 positive cases, six were T2, in which five developed recurrence and/or metastasis. Inversely, in the group of tumors that showed no H19 gene expression, 5 out of 24 were T2 and only I presented regional recurrence. These data support the hypothesis that H19 expression could be used as a prognostic marker to indicate recurrence in early stage tumors. We also examined the methylation of the CTCF binding site 1 in a subgroup of these samples. The H19 gene silencing and loss of imprinting were not correlated with the methylation pattern of the CTCF binding site 1. However, the significant correlation between H19 expression and tumor recurrence suggest that this transcript could be a marker for the progression of HNSCC. (c) 2005 Wiley-Liss, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of the present study was to standardize the analysis of zinc binding on human red blood cell (RBC) membranes in 20 normal adults. The displacement studies revealed that at the maximal stable zinc concentration tested (600 muM), 57% (mean) of the bound Zn-65 was displaced and to displace half maximal Zn-65, the stable zinc concentration was 300 muM. Scatchard plots revealed two classes of binding sites for zinc on RBC membranes: one with higher affinity, Kd = 1.20 x 10(-5) M (site I), and the other with lower affinity, Kd = 2.77 x 10(-4) M (site II). Binding sites occupancy was 97% means and 58.5% means for sites I and 11, respectively. The displacement was affected by temperature, membrane protein concentration, freezing, thawing, and dialysis. Other metal cations, including Co++, Fe++, and Mn++, had very little effect on Zn-65 displacement, in contrast copper displaced Zn-65 from its binding sites on RBC membranes. Zinc binding to RBC membranes was rapid and readily reversible in a dynamic equilibrium with its binding sites. It is anticipated that this method will be applicable to studies of a wide variety of diseases specifically related to zinc metabolism in humans as well as in animals. (C) 1994 Wiley-Liss, Inc.
Resumo:
Rat osseous plate alkaline phosphatase is a metalloenzyme with two binding sites for Zn2+ (sites I and III) and one for Mg2+ (site II). This enzyme is stimulated synergistically by Zn2+ and Mg2+ (Ciancaglini et al., 1992) and also by Mn2+ (Leone et al., 1995) and Co2+ (Ciancaglini et al., 1995). This study was aimed to investigate the modulation of enzyme activity by Ca2+. In the absence of Zn2+ and Mg2+, Ca2+ had no effects on the activity of Chelex-treated, Polidocanol-solubilized enzyme. However, in the presence of 10 mu M MgCl2, increasing concentration of Ca2+ were inhibitory, suggesting the displacement of Mg2+ from the magnesium-reconstituted enzyme. For calcium-reconstituted enzyme, Zn2+ concentrations Zip to 0.1 mu M were stimulatory, increasing specific activity from 130 U/mg to about 240 U/mg with a K-0.5 = 8.5 nM. Above 0.1 mu M Zn2+ exerted a strong inhibitory effect and concentrations of Ca2+ up to I mM were not enough to counteract this inhibition, indicating that Ca2+ was easily displaced by Zn2+. At fixed concentrations of Ca2+, increasing concentrations of Mg2+ increased the enzyme specific activity from 472 U/mg to about 547 U/mg, but K-0.5 values were significantly affected (from 4.4 mu M to 38.0 mu M). The synergistic effects observed for the activity of Ca2+ plus magnesium-reconstituted enzyme, suggested that these two ions bind to the different sites. A model to explain the effect of Ca2+ on the activity of the enzyme is presented. (C) 1997 Elsevier B.V.
Resumo:
Actiaomycin-D (actD) binds to natural DNA at two different classes of binding sites, weak and strong. The affinity for these sites is highly dependent on DNA se(sequence and solution conditions, and the interaction appears to be purely entropic driven Although the entropic character of this reaction has been attributed to the release of water molecules upon drug to DNA complex formation, the mechanism by which hydration regulates actD binding and discrimination between different classes of binding sites on natural DNA is still unknown. In this work, we investigate the role of hydration on this reaction using the osmotic stress method. We skew that the decrease of solution water activity, due to the addition of sucrose, glycerol ethylene glycol, and betaine, favors drug binding to the strong binding sites on DNA by increasing both the apparent binding affinity Delta G, and the number of DNA base pairs apparently occupied by the bound drug n(bp/actD). These binding parameters vary linearly with the logarithm of the molar fraction of water in solution log(X-w), which indicates the contribution of water binding to the energetic of the reaction. It is demonstrated that the hydration change measured upon binding increases proportionally to the apparent size of the binding site n(bp/uctD). This indicates that n(bp/actD) measured from the Scatchard plod is a measure of the size of the DNA molecule changing conformation due to ligand binding. We also find that the contribution of DNA deformation, gauged by n(bp/act) to the total free energy of binding Delta G, is given by Delta G = Delta G(local) + n(bp/actD) x delta G(DNA), where Delta G(local), = -8020 +/- 51 cal/mol of actD bound and delta G(DNa) = -24.1 +/- 1.7cal/mol of base pair at 25 degrees C. We interpret Delta G(local), as the energetic contribution due to the direct interactions of actD with the actual tetranucleotide binding site, and it n(bp/actB) X delta G(DNA) as that due to change inconformation, induced by binding, of it n(bp/actD) DNA base pairs flanking the local site. This interpretation is supported by the agreement found between the value of delta G(DNA) and the torsional free energy change measured independently. We conclude suggesting an allosteric model for ligand binding to DNA, such that the increase in binding affinity is achieved by increasing the relaxation of the unfavorable free energy of binding storage at the local site through a larger number of DNA base pairs. The new aspect on this model is that the size of the complex is not fixed but determined by solutions conditions, such as water activity, which modulate the energetic barrier to change helix conformation. These results may suggest that long-range allosteric transitions of duplex DNA are involved in the inhibition of RNA synthesis by actD, and more generally, in the regulation of transcription. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Adhesion is regarded as an important step in the pathogenesis of several microorganisms. Thus, the ability to recognize extracellular matrix proteins, such as laminin or fibronectin, has been correlated with invasiveness. Studying the already characterized laminin-binding protein of Paracoccidioides brasiliensis, the 43 kDa glycoprotein (gp43), we evaluated whether MAb 1.H12, raised against the laminin-binding protein from Staphylococcus aureus, cross-reacts with that fungal protein. By immunoblot analysis we show that MAb 1.H12 recognizes gp43. This interaction is able to inhibit the laminin-mediated adhesion to epithelial cells as well as the P. brasiliensis infection in vivo. Moreover, through immunoenzymatic assays, we show that MAb 1.H12 recognizes gp43 in solid phase and that this interaction is partially inhibited by the addition of anti-gp43 MAbs. These results show that MAb 1.H12 recognizes the gp43, suggesting the presence of an epitope similar to those found in the other laminin-binding proteins from phylogenetically very distant cells. These findings reinforce the possibility of evolutionary conservation of such epitopes.