959 resultados para Binary Optical Element


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long period gratings (LPGs) were written into a D-shaped single-mode fiber. These LPGs were subjected to a range of curvatures, and it was found that as curvature increased, there was increasingly strong coupling to certain higher order cladding modes without the usual splitting of the LPGs stopbands. A bend-induced stopband yielded a spectral sensitivity of 12.55 nm·m for curvature and 2.2×10-2 nm°C-1 for temperature. It was also found that the wavelength separation between adjacent bend-induced stopbands varied linearly as a function of curvature. Blue and red wavelength shifts of the stopbands were observed as the sensor was rotated around a fixed axis for a given curvature; thus, in principle, this sensor could be used to obtain bending and orientational information. The behavior of the stopbands was successfully modeled using a finite element approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors have demonstrated an optical fibre grating based delay line which produces time delays in increments as small as 31 ps. The device could provide a true time delay component for a phased array antenna

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate bandpass nonlinear switching, using a novel device configuration based on a nonlinear-optical loop mirror and an in-fiber Bragg grating. Self-switching is demonstrated in the soliton regime by use of an asymmetrically arranged in-fiber Bragg grating as a wavelength-selective element. In addition, we adapt the configuration to perform efficient two-wavelength switching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long period gratings (LPGs) were written into a D-shaped optical fibre that has an elliptical core with a W-shaped refractive index profile and the first detailed investigation of such LPGs is presented. The LPGs’ attenuation bands were found to be sensitive to the polarisation of the interrogating light with a spectral separation of about 15 nm between the two orthogonal polarisation states. A finite element method was successfully used to model many of the behavioural features of the LPGs. In addition, two spectrally overlapping attenuation bands corresponding to orthogonal polarisation states were observed; modelling successfully reproduced this spectral feature. The spectral sensitivity of both orthogonal states was experimentally measured with respect to temperature and bending. These LPG devices produced blue and red wavelength shifts depending upon the orientation of the bend with measured maximum sensitivities of -3.56 and +6.51 nm m, suggesting that this type of fibre LPG may be useful as a shape/bend orientation sensor with reduced errors associated with polarisation dependence. The use of neighbouring bands to discriminate between temperature and bending was also demonstrated, leading to an overall curvature error of ±0.14 m-1 and an overall temperature error of ±0.3 °C with a maximum polarisation dependence error of ±8 × 10-2 m-1 for curvature and ±5 × 10-2 °C for temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long period gratings (LPGs) were written into a D-shaped single-mode fiber. These LPGs were subjected to a range of curvatures, and it was found that as curvature increased, there was increasingly strong coupling to certain higher order cladding modes without the usual splitting of the LPGs stopbands. A bend-induced stopband yielded a spectral sensitivity of 12.55 nm · m for curvature and 2.2 × 10-2 nm°C-1 for temperature. It was also found that the wavelength separation between adjacent bend-induced stopbands varied linearly as a function of curvature. Blue and red wavelength shifts of the stopbands were observed as the sensor was rotated around a fixed axis for a given curvature; thus, in principle, this sensor could be used to obtain bending and orientational information. The behavior of the stopbands was successfully modeled using a finite element approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents experimental investigations of the use of semiconductor optical amplifiers in a nonlinear loop mirror (SOA-NOLM) and its application in all-optical processing. The techniques used are mainly experimental and are divided into three major applications. Initially the semiconductor optical amplifier, SOA, is experimentally characterised and the optimum operating condition is identified. An interferometric switch based on a Sagnac loop with the SOA as the nonlinear element is employed to realise all-optical switching. All-optical switching is a very attractive alternative to optoelectronic conversion because it avoids the conversion from the optical to the electronic domain and back again. The first major investigation involves a carrier suppressed return to zero, CSRZ, format conversion and transmission. This study is divided into single channel and four channel WDM respectively. The optical bandwidth which limits the conversion is investigated. The improvement of the nonlinear tolerance in the CSRZ transmission is shown which shows the suitability of this format for enhancing system performance. Second, a symmetrical switching window is studied in the SOA-NOLM where two similar control pulses are injected into the SOA from opposite directions. The switching window is symmetric when these two control pulses have the same power and arrive at the same time in the SOA. Finally, I study an all-optical circulating shift register with an inverter. The detailed behaviour of the blocks of zeros and ones has been analysed in terms of their transient measurement. Good agreement with a simple model of the shift register is obtained. The transient can be reduced but it will affect the extinction ratio of the pulses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of high birefringence fiber interrogating interferometer for optical sensing applications was discussed. The method is of low cost and permits simple adjustment of the optical path difference and has much lower sensitivity to environmental perturbation. The polarization-maintaining (PM) fiber interferometer adopted a heterodyne approach using interferometric wavelength shift detection. The study showed that the inclusion of power amplifier driving a multi-element piezoelectric stack will enable the bandwidth to be pushed up into the kHz regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have proposed and demonstrated a fibre laser system using a microchannel as a cavity loss tuning element for surrounding medium refractive index (SRI) sensing. A ~6µm width microchannel was created by femtosecond (fs) laser inscription assisted chemical etching in the cavity fibre, which offers a direct access to the external liquids. When the SRI changes, the microchannel behaves as a loss tuning element, hence modulating the laser cavity loss and output power. The results indicate that the presented laser sensing system has a linear response to the SRI with a sensitivity in the order of 10-5. Using higher pump power and more sensitive photodetector, the SRI sensitivity could be further enhanced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous conversion of the two orthogonal phase components of an optical input to different output frequencies has been demonstrated by simulation and experiment. A single stage of four-wave mixing between the input signal and four pumps derived from a frequency comb was employed. The nonlinear device was a semiconductor optical amplifier, which provided overall signal gain and sufficient contrast for phase sensitive signal processing. The decomposition of a quadrature phase-shift keyed signal into a pair of binary phase-shift keyed outputs at different frequencies was also demonstrated by simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the first experimental implementation of a 3.9-Gb/s differential binary phase-shift keying (DBPSK)-based double sideband (DSB) optical fast orthogonal frequency-division-multiplexing (FOFDM) system with a reduced subcarrier spacing equal to half the symbol rate over 300m of multimode fiber (MMF) using intensity-modulation and direct-detection (IM/DD). The required received optical power at a bit-error rate (BER) of 10(-3) was measured to be similar to -14.2 dBm with a receiver sensitivity penalty of only similar to 0.2 dB when compared to the back-to-back case. Experimental results agree very well with the theoretical predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibre-optic communications systems have traditionally carried data using binary (on-off) encoding of the light amplitude. However, next-generation systems will use both the amplitude and phase of the optical carrier to achieve higher spectral efficiencies and thus higher overall data capacities(1,2). Although this approach requires highly complex transmitters and receivers, the increased capacity and many further practical benefits that accrue from a full knowledge of the amplitude and phase of the optical field(3) more than outweigh this additional hardware complexity and can greatly simplify optical network design. However, use of the complex optical field gives rise to a new dominant limitation to system performance-nonlinear phase noise(4,5). Developing a device to remove this noise is therefore of great technical importance. Here, we report the development of the first practical ('black-box') all-optical regenerator capable of removing both phase and amplitude noise from binary phase-encoded optical communications signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the early days of quantum mechanics, Schrödinger noticed that oscillations of a wave packet in a one-dimensional harmonic potential well are periodic and, in contrast to those in anharmonic potential wells, do not experience distortion over time. This original idea did not find applications up to now since an exact one-dimensional harmonic resonator does not exist in nature and has not been created artificially. However, an optical pulse propagating in a bottle microresonator (a dielectric cylinder with a nanoscale-high bump of the effective radius) can exactly imitate a quantum wave packet in the harmonic potential. Here, we propose a tuneable microresonator that can trap an optical pulse completely, hold it as long as the material losses permit, and release it without distortion. This result suggests the solution of the long standing problem of creating a microscopic optical buffer, the key element of the future optical signal processing devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear optical loop mirror (NOLM) requires breaking the loop symmetry to enable the counter propagating pulses to acquire a differential π phase shift. This is achieved with either an asymmetric fused fibre coupler at the input or by the inclusion of an asymmetrically located gain or loss element within the loop. By introducing a frequency selective loss element, nonlinear switching may be confined to a narrow band of wavelengths or multiple wavelengths. This configuration may have applications in time-wavelength demultiplexing. We demonstrate this technique of bandpass switching in the soliton regime using a fibre-Bragg grating reflector as the wavelength dependent loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long period gratings (LPGs) were written into a D-shaped optical fibre that has an elliptical core with a W-shaped refractive index profile and the first detailed investigation of such LPGs is presented. The LPGs’ attenuation bands were found to be sensitive to the polarisation of the interrogating light with a spectral separation of about 15 nm between the two orthogonal polarisation states. A finite element method was successfully used to model many of the behavioural features of the LPGs. In addition, two spectrally overlapping attenuation bands corresponding to orthogonal polarisation states were observed; modelling successfully reproduced this spectral feature. The spectral sensitivity of both orthogonal states was experimentally measured with respect to temperature and bending. These LPG devices produced blue and red wavelength shifts depending upon the orientation of the bend with measured maximum sensitivities of -3.56 and +6.51 nm m, suggesting that this type of fibre LPG may be useful as a shape/bend orientation sensor with reduced errors associated with polarisation dependence. The use of neighbouring bands to discriminate between temperature and bending was also demonstrated, leading to an overall curvature error of ±0.14 m-1 and an overall temperature error of ±0.3 °C with a maximum polarisation dependence error of ±8 × 10-2 m-1 for curvature and ±5 × 10-2 °C for temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel device configuration is used to demonstrate wavelength-confined, a bandpass, switching in a nonlinear-optical loop mirror (WOLM). Demonstrated is a self-switching in the soliton regime using a partially reflecting Bragg grating as a wavelength-dependent loss element. Two wavelength operation in which a signal is switched through the use of cross phase modulation, are demonstrated. Observed is the operation of the device confined to wavelengths defined by the grating reflection band.