911 resultados para Bimaterial Interfaces
Resumo:
Análise, de forma visual, de como algumas grandezas físico-químico estão presentes na interface proteica. A proteína é mostrada em 3 dimensões(3D). Cada região da cadeia proteic é colorida com uma cor diferente, representando a variaçao de características físico-químicas na cadeia
Resumo:
Estrutura da ferramenta ServCLIPS. Representação de interfaces com o usuário em XML.
Resumo:
Este documento apresenta o esquema de tradução proposto para as telas de entrada de dados do banco de dados de experimentos em manejo de fertilizantes para cana-de-açúcar.
Resumo:
A presente publicação descreve alguns modelos capazes de simular o comportamento e o destino de agrotóxicos e outros contaminantes, e destaca como esses modelos podem ser mais efetivos quando agrega-se, a eles, a capacidade de lidar com a dimensão espacial.
Resumo:
Mishuris, Gennady; Movchan, N.V.; Movchan, A.B., (2006) 'Steady-state motion of a Mode-III crack on imperfect interfaces', Quarterly Journal of Mechanics and Applied Mathematics 59(4) pp.487-516 RAE2008
Resumo:
Intelligent assistive technology can greatly improve the daily lives of people with severe paralysis, who have limited communication abilities. People with motion impairments often prefer camera-based communication interfaces, because these are customizable, comfortable, and do not require user-borne accessories that could draw attention to their disability. We present an overview of assistive software that we specifically designed for camera-based interfaces such as the Camera Mouse, which serves as a mouse-replacement input system. The applications include software for text-entry, web browsing, image editing, animation, and music therapy. Using this software, people with severe motion impairments can communicate with friends and family and have a medium to explore their creativity.
Resumo:
A method called "SymbolDesign" is proposed that can be used to design user-centered interfaces for pen-based input devices. It can also extend the functionality of pointer input devices such as the traditional computer mouse or the Camera Mouse, a camera-based computer interface. Users can create their own interfaces by choosing single-stroke movement patterns that are convenient to draw with the selected input device and by mapping them to a desired set of commands. A pattern could be the trace of a moving finger detected with the Camera Mouse or a symbol drawn with an optical pen. The core of the SymbolDesign system is a dynamically created classifier, in the current implementation an artificial neural network. The architecture of the neural network automatically adjusts according to the complexity of the classification task. In experiments, subjects used the SymbolDesign method to design and test the interfaces they created, for example, to browse the web. The experiments demonstrated good recognition accuracy and responsiveness of the user interfaces. The method provided an easily-designed and easily-used computer input mechanism for people without physical limitations, and, with some modifications, has the potential to become a computer access tool for people with severe paralysis.
Resumo:
Diminishing non-renewable energy resources and planet-wide de-pollution on our planet are among the major problems which mankind faces into the future. To solve these problems, renewable energy sources such as readily available and inexhaustible sunlight will have to be used. There are however no readily available photocatalysts that are photocatalytically active under visible light; it is well established that the band gap of the prototypical photocatalyst, titanium dioxide, is the UV region with the consequence that only 4% of sun light is utilized. For this reason, this PhD project focused on developing new materials, based on titanium dioxide, which can be used in visible light activated photocatalytic hydrogen production and destruction of pollutant molecules. The main goal of this project is to use simulations based on first principles to engineer and understand rationally, materials based on modifying TiO2 that will have the following properties: (1) a suitable band gap in order to increase the efficiency of visible light absorption, with a gap around 2 – 2.5 eV considered optimum. (2). The second key aspect in the photocatalytic process is electron and hole separation after photoexcitation, which enable oxidation/reduction reactions necessary to i.e. decompose pollutants. (3) Enhanced activity over unmodified TiO2. In this thesis I present results on new materials based on modifying TiO2 with supported metal oxide nanoclusters, from two classes, namely: transition metal oxides (Ti, Ni, Cu) and p-block metal oxides (Sn, Pb, Bi). We find that the deposited metal oxide nanoclusters are stable at rutile and anatase TiO2 surfaces and present an analysis of changes to the band gap of TiO2, identifying those modifiers that can change the band gap to the desirable range and the origin of this. A successful collaboration with experimental researchers in Japan confirms many of the simulation results where the origin of improved visible light photocatalytic activity of oxide nanocluster-modified TiO2 is now well understood. The work presented in this thesis, creates a road map for the design of materials with desired photocatalytic properties and contributes to better understanding these properties which are of great application in renewable energy utilization.
Resumo:
This research investigates some of the reasons for the reported difficulties experienced by writers when using editing software designed for structured documents. The overall objective was to determine if there are aspects of the software interfaces which militate against optimal document construction by writers who are not computer experts, and to suggest possible remedies. Studies were undertaken to explore the nature and extent of the difficulties, and to identify which components of the software interfaces are involved. A model of a revised user interface was tested, and some possible adaptations to the interface are proposed which may help overcome the difficulties. The methodology comprised: 1. identification and description of the nature of a ‘structured document’ and what distinguishes it from other types of document used on computers; 2. isolation of the requirements of users of such documents, and the construction a set of personas which describe them; 3. evaluation of other work on the interaction between humans and computers, specifically in software for creating and editing structured documents; 4. estimation of the levels of adoption of the available software for editing structured documents and the reactions of existing users to it, with specific reference to difficulties encountered in using it; 5. examination of the software and identification of any mismatches between the expectations of users and the facilities provided by the software; 6. assessment of any physical or psychological factors in the reported difficulties experienced, and to determine what (if any) changes to the software might affect these. The conclusions are that seven of the twelve modifications tested could contribute to an improvement in usability, effectiveness, and efficiency when writing structured text (new document selection; adding new sections and new lists; identifying key information typographically; the creation of cross-references and bibliographic references; and the inclusion of parts of other documents). The remaining five were seen as more applicable to editing existing material than authoring new text (adding new elements; splitting and joining elements [before and after]; and moving block text).
Resumo:
Amorphous silicon has become the material of choice for many technologies, with major applications in large area electronics: displays, image sensing and thin film photovoltaic cells. This technology development has occurred because amorphous silicon is a thin film semiconductor that can be deposited on large, low cost substrates using low temperature. In this thesis, classical molecular dynamics and first principles DFT calculations have been performed to generate structural models of amorphous and hydrogenated amorphous silicon and interfaces of amorphous and crystalline silicon, with the ultimate aim of understanding the photovoltaic properties of core-shell crystalline amorphous Si nanowire structures. We have shown, unexpectedly, from the simulations, that our understanding of hydrogenated bulk a-Si needs to be revisited, with our robust finding that when fully saturated with hydrogen, bulk a-Si exhibits a constant optical energy gap, irrespective of the hydrogen concentration in the sample. Unsaturated a-Si:H, with a lower than optimum hydrogen content, shows a smaller optical gap, that increases with hydrogen content until saturation is reached. The mobility gaps obtained from an analysis of the electronic states show similar behavior. We also obtained that the optical and mobility gaps show a volcano curve as the H content is varied from 7% (undersaturation) to 18% (mild oversaturation). In the case of mild over saturation, the mid-gap states arise exclusively from an increase in the density of strained Si-Si bonds. Analysis of our structures shows the extra H atoms in this case form a bridge between neighboring silicon atoms which increases the corresponding Si-Si distance and promotes bond length disorder in the sample. That has the potential to enhance the Staebler-Wronski effect. Planar interface models of amorphous-crystalline silicon have been generated in Si (100), (110) and (111) surfaces. The interface models are characterized by structure, RDF, electronic density of states and optical absorption spectrum. We find that the least stable (100) surface will result in the formation of the thickest amorphous silicon layer, while the most stable (110) surface forms the smallest amorphous region. We calculated for the first time band offsets of a-Si:H/c-Si heterojunctions from first principles and examined the influence of different surface orientations and amorphous layer thickness on the offsets and implications for device performance. The band offsets depend on the amorphous layer thickness and increase with thickness. By controlling the amorphous layer thickness we can potentially optimise the solar cell parameters. Finally, we have successfully generated different amorphous layer thickness of the a-Si/c-Si and a-Si:H/c-Si 5 nm nanowires from heat and quench. We perform structural analysis of the a-Si-/c-Si nanowires. The RDF, Si-Si bond length distributions, and the coordination number distributions of amorphous regions of the nanowires reproduce similar behaviour compared to bulk amorphous silicon. In the final part of this thesis we examine different surface terminating chemical groups, -H, - OH and –NH2 in (001) GeNW. Our work shows that the diameter of Ge nanowires and the nature of surface terminating groups both play a significant role in both the magnitude and the nature of the nanowire band gaps, allowing tuning of the band gap by up to 1.1 eV. We also show for the first time how the nanowire diameter and surface termination shifts the absorption edge in the Ge nanowires to longer wavelengths. Thus, the combination of nanowire diameter and surface chemistry can be effectively utilised to tune the band gaps and thus light absorption properties of small diameter Ge nanowires.
Resumo:
Current methods for large-scale wind collection are unviable in urban areas. In order to investigate the feasibility of generating power from winds in these environments, we sought to optimize placements of small vertical-axis wind turbines in areas of artificially-generated winds. We explored both vehicular transportation and architecture as sources of artificial wind, using a combination of anemometer arrays, global positioning system (GPS), and weather report data. We determined that transportation-generated winds were not significant enough for turbine implementation. In addition, safety and administrative concerns restricted the implementation of said wind turbines along roadways for transportation-generated wind collection. Wind measurements from our architecture collection were applied in models that can help predict other similar areas with artificial wind, as well as the optimal placement of a wind turbine in those areas.
Resumo:
The work presented in this paper is part of the OPISA project. This is a collaborative research project between the University of Greenwich and Bookham Technology. This report describes some of the initial work undertaken towards the goal of investigating optoelectronic packaging where alignment issues between optical sources and fibers can arise as part of the fabrication process. The focus of this study is on charting the dynamics of laser spot weld formation. This paper introduces some of the initial simulation work that has been undertaken and presents a model describing a transient heat source applied from a laser pulse to weld a stainless steel sleeve and ferrule and the resulting weld formation
Resumo:
Ball shear test is the most common test method used to assess the reliability of bond strength for ball grid array (BGA) packages. In this work, a combined experimental and numerical study was carried out to realize of BGA solder interface strength. Solder mask defined bond pads on the BGA substrate were used for BGA ball bonding. Different bond pad metallizations and solder alloys were used. Solid state aging at 150degC up to 1000 h has been carried out to change the interfacial microstructure. Cross-sectional studies of the solder-to-bond pad interfaces was conducted by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray (EDX) analyzer to investigate the interfacial reaction phenomena. Ball shear tests have been carried out to obtain the mechanical strength of the solder joints and to correlate shear behaviour with the interfacial reaction products. An attempt has been taken to realize experimental findings by Finite Element Analysis (FEA). It was found that intermetallic compound (IMC) formation at the solder interface plays an important role in the BGA solder bond strength. By changing the morphology and the microchemistry of IMCs, the fracture propagation path could be changed and hence, reliability could be improved