976 resultados para Bengal Fan
Resumo:
Inputs of nitrogen, phosphorous and dissolved silica from watersheds draining into the Bay of Bengal Large Marine Ecosystem are calculated for the present day and predictions made for 2030 and 2050 are presented. The major sources are identified and the Indicator of Coastal Eutrophication (ICEP) is calculated.
Resumo:
The objective of the workshop was to begin a structured discussion on regional governance in the BOBLME, drawing on lessons from a region with similar issues, the Carribean. Conclusions were made about principles, regional governance arrangements, national-regional interface and national science-policy interfaces. Future work was also planned.
Resumo:
The objective of the study was to assess the economic value of ecosystem services in the Bay of Bengal.The manin aim was to support the development of a Strategic Action Plan (SAP). Findings included: economic consequences of ecosystem change; potential economic instruments to strengthen sustainable management; and recommendations on next steps in using economic valuation.
Resumo:
Country overviews of Integrated Coastal Management (ICM) for Indonesia, Malaysia, Myanmar and Thailand. Policies, scale and practices - what works and what does not work. Conclusions, limitations and suggestions
Resumo:
This study summarises the high level drivers on ecological systems of the BOBLME. The ecological characterisation resulted in the identification of 29 subsystems. The report recommends the development of fully integrated approaches that considers human needs and the ecological system, involving stakeholders in a transparent way.
Resumo:
Participants consisted of 25 middle and junior level personnel from BOBLME countries. Modules included: Integrated Coastal Management (ICM) concept and principles; ICM development and implementation; indicators of good practice; and action planning.
Resumo:
Socio-economic Monitoring (SocMon) is an approach and set of tools for conducting socio-economic monitoring of changes in coastal communities. Planned outputs of the workshop included: training of local staff i SocMon methodologies; draft a SocMon report for St. Martin's Island; a workplan for implementing the SocMon; a communication strategy; and key inputs to a regional SocMon strategy
Resumo:
This Socioeconomic Monitoring (SocMon) training workshop was coordinated by the Small Fisher Federation of Lanka (SFFL). Planned outputs included: participants from Mannar trained in SocMon methodologies; draft SocMon reports fro Vidathaltivu; a workplan for Mannar; a communication strategy for Vidathaltivu/ Mannar; and key inputs to a regional SocMon strategy
Resumo:
Socio-economic Monitoring (SocMon) is an approach and set of tools for conducting socio-economic monitoring of changes in coastal communities. Key considerations included: importance of local partnerships; government and civil society partnerships; emphasis of adapting SocMon to local needs and priorities; capacity building; engaging with local stakeholders; inter and intra-regional collaboration; importance of language; and importance of language.
Resumo:
This brochure suggests casting a wider net when dealing with governance assessment to include other players.
Resumo:
The performance of a transonic fan operating within nonuniform inlet flow remains a key concern for the design and operability of a turbofan engine. This paper applies computational methods to improve the understanding of the interaction between a transonic fan and an inlet total pressure distortion. The test case studied is the NASA rotor 67 stage operating with a total pressure distortion covering a 120-deg sector of the inlet flow field. Full-annulus, unsteady, three-dimensional CFD has been used to simulate the test rig installation and the full fan assembly operating with inlet distortion. Novel post-processing methods have been applied to extract the fan performance and features of the interaction between the fan and the nonuniform inflow. The results of the unsteady computations agree well with the measurement data. The local operating condition of the fan at different positions around the annulus has been tracked and analyzed, and this is shown to be highly dependent on the swirl and mass flow redistribution that the rotor induces ahead of it due to the incoming distortion. The upstream flow effects lead to a variation in work input that determines the distortion pattern seen downstream of the fan stage. In addition, the unsteady computations also reveal more complex flow features downstream of the fan stage, which arise due to the three dimensionality of the flow and unsteadiness. © 2012 American Society of Mechanical Engineers.
Resumo:
The use of boundary-layer-ingesting, embedded propulsion systems can result in inlet flow distortions where the interaction of the boundary layer vorticity and the inlet lip causes horseshoe vortex formation and the ingestion of streamwise vortices into the inlet. A previously-developed body-force-based fan modeling approach was used to assess the change in fan rotor shock noise generation and propagation in a boundary-layer-ingesting, serpentine inlet. This approach is employed here in a parametric study to assess the effects of inlet geometry parameters (offset-to-diameter ratio and downstream-to-upstream area ratio) on flow distortion and rotor shock noise. Mechanisms related to the vortical inlet structures were found to govern changes in the rotor shock noise generation and propagation. The vortex whose circulation is in the opposite direction to the fan rotation (counter-swirling vortex) increases incidence angles on the fan blades near the tip, enhancing noise generation. The vortex with circulation in the direction of fan rotation (co-swirling vortex) creates a region of subsonic relative flow near the blade tip radius which decreases the sound power propagated to the far-field. The parametric study revealed that the overall sound power level at the fan leading edge is set by the ingested streamwise circulation, and that for inlet designs in which the streamwise vortices are displaced away from the duct wall, the sound power at the upstream inlet plane increased by as much as 9 dB. By comparing the far-field noise results obtained to those for a conventional inlet, it is deduced that the changes in rotor shock noise are predominantly due to the ingestion of streamwise vorticity.
Resumo:
The use of boundary-layer-ingesting, embedded propulsion systems can result in inlet flow distortions where the interaction of the boundary layer vorticity and the inlet lip causes horseshoe vortex formation and the ingestion of streamwise vortices into the inlet. A previously-developed body-force-based fan modeling approach was used to assess the change in fan rotor shock noise generation and propagation in a boundary-layer-ingesting, serpentine inlet. This approach is employed here in a parametric study to assess the effects of inlet geometry parameters (offset-to-diameter ratio and downstream-to-upstream area ratio) on flow distortion and rotor shock noise. Mechanisms related to the vortical inlet structures were found to govern changes in the rotor shock noise generation and propagation. The vortex whose circulation is in the opposite direction to the fan rotation (counter-swirling vortex) increases incidence angles on the fan blades near the tip, enhancing noise generation. The vortex with circulation in the direction of fan rotation (co-swirling vortex) creates a region of subsonic relative flow near the blade tip radius which decreases the sound power propagated to the far-field. The parametric study revealed that the overall sound power level at the fan leading edge is set by the ingested streamwise circulation, and that for inlet designs in which the streamwise vortices are displaced away from the duct wall, the sound power at the upstream inlet plane increased by as much as 9 dB. By comparing the far-field noise results obtained to those for a conventional inlet, it is deduced that the changes in rotor shock noise are predominantly due to the ingestion of streamwise vorticity.
Resumo:
An investigation was carried out into the effects of variable inlet guide vanes (VIGVs) on the performance and stability margin of a transonic fan in the presence of inlet flow distortion. The study was carried out using computational fluid dynamics (CFD) and validated with experimental data. The capability of CFD to predict the changes in performance with or without VIGVs in the presence of an inlet flow distortion is assessed. Results show that the VIGVs improve the performance and stability margin and do so by reducing the amount of swirl at inlet to the rotor component of the fan.