954 resultados para Bending plates
Resumo:
Many prokaryotic nucleoid proteins bend DNA and form extended helical protein-DNA fibers rather than condensed structures. On the other hand, it is known that such proteins (such as bacterial HU) strongly promote DNA condensation by macromolecular crowding. Using theoretical arguments, we show that this synergy is a simple consequence of the larger diameter and lower net charge density of the protein-DNA filaments as compared to naked DNA, and hence, should be quite general. To illustrate this generality, we use light-scattering to show that the 7kDa basic archaeal nucleoid protein Sso7d from Sulfolobus solfataricus (known to sharply bend DNA) likewise does not significantly condense DNA by itself. However, the resulting protein-DNA fibers are again highly susceptible to crowding-induced condensation. Clearly, if DNA-bending nucleoid proteins fail to condense DNA in dilute solution, this does not mean that they do not contribute to DNA condensation in the context of the crowded living cell. © 2007 World Scientific Publishing Company.
Resumo:
Standard Test Methods (e.g. ASTM, DIN) for materials characterization in general, and for fatigue in particular, do not contemplate specimens with complex geometries, as well as the combination of axial and in-plane bending loads in their methodologies. The present study refers to some patents and the new configuration or configurations of specimens (non-standardized by the status quo of test methods) and a device developed to induce axial and bending combined forces resultants from axial loads applied by any one test equipment (dynamic or monotonic) which possesses such limitation, towards obtaining more realistic results on the fatigue behavior, or even basic mechanical properties, from geometrically complex structures. Motivated by a specific and geometrically complex aeronautic structure (motor-cradle), non-standardized welded tubular specimens made from AISI 4130 steel were fatigue-tested at room temperature, by using a constant amplitude sinusoidal load of 20 Hz frequency, load ratio R = 0.1 with and without the above referred auxiliary fatigue apparatus. The results showed the fatigue apparatus was efficient for introducing higher stress concentration factor at the welded specimen joints, consequently reducing the fatigue strength when compared to other conditions. From the obtained results it is possible to infer that with small modifications the proposed apparatus will be capable to test a great variety of specimen configurations such as: squared tubes and plates with welded or melted junctions, as well as other materials such as aluminum, titanium, composites, polymeric, plastics, etc. © 2009 Bentham Science Publishers Ltd.
Resumo:
The use of composite materials has increased in the recent decades, mainly in the aeronautics and automotives industries. In the present study is elaborated a computational simulation program of the bending test using the finite elements method, in the commercial software ANSYS. This simulation has the objective of analyze the mechanical behavior in bending of two composites with polymeric matrix reinforced with carbon fibers. Also are realized bending tests of the 3 points to obtain the resistances of the materials. Data from simulation and tests are used to make a comparison between two failures criteria, Tsai-Wu and Hashin criterion. Copyright © 2009 SAE International.
Resumo:
Atrophic mandible fractures are frequently a challenge to stabilize. This study evaluated, through mechanical testing in vitro, the number of locking screws that is sufficient to withstand loading when applied with a locking reconstruction plate in the fixation of atrophic mandible fractures. Polyurethane mandibles with a simulated linear fracture at the midline were used as substratum. Results show that resistance of the fixation is poor when one and two screws are used on each side of the fracture. Three screws on each side of the fracture significantly increases the resistance to displacement. However, no additional strength is added to the construct when more than three screws per side are used. © 2013 International Association of Oral and Maxillofacial Surgeons.
The effect of locked screw angulation on the biomechanical properties of the S.P.S. Free-Block plate
Resumo:
Objectives: Among the locked internal fixators is one denominated S.P.S. (Synthesis Pengo System) Free-Block, which was designed with a locking ring that allows the screw to be locked and positioned obliquely. Due to the paucity of biomechanical studies on this system, the present work aimed to evaluate the influence of locked screw angulation on the resistance of the S.P.S. Free--Block plate. Methods: Forty synthetic bone cylinders with 10 mm fracture gap were used. Forty seven-hole 3.5 mm stainless steel plates (two AO-like dynamic compression holes and five locked holes) were assembled according to the orientation of the locked screws: mono cortical screws were positioned at 90° to the long axis of the cylinder (Group 1), and monocortical screws were positioned at 70° to its cylinder long axis (Group 2). In both groups, AO-like dynamic compression hole screws were positioned bicortically and neutrally. For each group, six specimens were tested until failure, three in bending and three in compression, to determine the loads for fatigue testing. Subsequently, for each group, 14 specimens were tested for failure --seven by bending and seven in compression. Results: No significant failure differences were observed between Groups 1 and 2 under static-loading or fatigue test. Clinical significance: In a fracture gap model the orientation of the locked monocortical screws did not show any influence on the mechanical performance of the S.P.S. Free-Block to tests of axial compression and four-point bending. © Schattauer 2013.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
ABSTRACT: The thermal entry region in laminar forced convection of Herschel-Bulkley fluids is solved analytically through the integral transform technique, for both circular and parallel-plates ducts, which are maintained at a prescribed wall temperature or at a prescribed wall heat flux. The local Nusselt numbers are obtained with high accuracy in both developing and fully-developed thermal regions, and critical comparisons with previously reported numerical results are performed.
Resumo:
This paper presents three different numerical models for the evaluation of the stresses in corrugated sheets under bending. Regarding the numerical simulations different approaches can be considered, i.e., a elastic linear analysis or a physical nonlinear analysis, that considers criteria to fail for the sheet material. Moreover, the construction of the finite element mesh can be used shell elements or solid elements. The choice of each finite element must be made from the consideration of their representativity before behavior to be simulated. Thus, the numerical modelling in this manuscript was performed from the three-dimensional models using the SAP2000Nonlinear software, version 7.42, which has as base the finite elements method (FEM). It was considered shell elements in the build the mesh of finite elements and an analysis of type elastic linear in this case. Five mm thick sheets were evaluated considering three different longitudinal dimensions (spans), i.e., 1100 mm, 1530 mm and 1830 mm. The applied load to the models was 2500 N/m and it was verified that the spans of support of sheets have a significant influence on the results of stresses. The sheets with larger spans present larger stresses for the same applied load. The most intense values of tension occur in the troughs (low waves) of the sheets, on the lower surface, while the most intense values of compression occur in the crests (high waves), on the upper surface of the sheet. The flanks, which are the parts among the troughs and crests of the sheets, are submitted to low levels of stresses. The numeric results of the stresses showed a good agreement with the results obtained from other researchers(3) and these results can be used to predict the behavior of corrugated sheets under bending.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work reports the study of an attractive interfacial wave for application in ultrasonic NDE techniques for inspection and fluid characterization. This wave, called quasi-Scholte mode, is a kind of flexural wave in a plate in contact with a fluid which presents a good sensitivity to the fluid properties. In order to explore this feature, the phase velocity curve of quasi-Scholte mode is experimentally measured in a plate in contact with a viscous fluid, showing a good agreement with theory.
Application of acoustoelasticity to measure the stress generated by milling in ASTM A36 steel plates
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to perform a physicochemical and morphological characterization and compare the mechanical behavior of an experimental Ti-Mo alloy to the analogous metallic Ti-based fixation system, for mandibular angle fractures. Twenty-eight polyurethane mandibles were uniformly sectioned on the left angle. These were divided into 4 groups: group Eng 1P, one 2.0-mm plate and 4 screws 6 mm long; group Eng 2P, two 2.0-mm plates, the first fixed with 4 screws 6 mm long and the second with 4 screws 12 mm long. The same groups were created for the Ti-15Mo alloy. Each group was subjected to linear vertical loading at the first molar on the plated side in a mechanical testing unit. Means and standard deviations were compared with respect to statistical significance using ANOVA. The chemical composition of the Ti-15Mo alloy was close to the nominal value. The mapping of Mo and Ti showed a homogeneous distribution. SEM of the screw revealed machining debris. For the plates, only the cpTi plate undergoes a surface treatment. The metallographic analysis reveals granular microstructure, from the thermomechanical trials. A statistically significant difference was found (P < 0.05) when the comparison between both internal fixation techniques was performed. The 2P technique showed better mechanical behavior than 1P.
Resumo:
It aims the comparison of these moments between an analytical plates theory and a computational numerical simulation. It is accented the details of studies about analytical theory as well the process, step by step, of a program that has as an influence the method of finite elements. The theory of plates has an extremely importance when it is talked about slabs and it takes as a base some fundamental hypotheses (that the middle point of the plate is considered flat and under formable) the points that are normal in relation to the middle surface is not considered because of its intensity that is irrelevant in comparison to the rest. The computational programs offer good results when they are applied in a correct way and, it resolves numerous functions in a short period of time. The objective is to highlight the importance of bending moments, its points of maximum and minimum, that has the objective of realize a good reinforcement sizing for a reinforced concrete. Furthermore, it can propitiate an economy in places that is demanded a small quantity of steel, before dimensioned for a load that is distributed in all the surface of the plate, at the same intensity