353 resultados para Batumi Seep
Resumo:
We investigated ecological, physiological, and skeletal characteristics of the calcifying green alga Halimeda grown at CO2 seeps (pHtotal ? 7.8) and compared them to those at control reefs with ambient CO2 conditions (pHtotal ? 8.1). Six species of Halimeda were recorded at both the high CO2 and control sites. For the two most abundant species Halimeda digitata and Halimeda opuntia we determined in situ light and dark oxygen fluxes and calcification rates, carbon contents and stable isotope signatures. In both species, rates of calcification in the light increased at the high CO2 site compared to controls (131% and 41%, respectively). In the dark, calcification was not affected by elevated CO2 in H. digitata, whereas it was reduced by 167% in H. opuntia, suggesting nocturnal decalcification. Calculated net calcification of both species was similar between seep and control sites, i.e., the observed increased calcification in light compensated for reduced dark calcification. However, inorganic carbon content increased (22%) in H. digitata and decreased (-8%) in H. opuntia at the seep site compared to controls. Significantly, lighter carbon isotope signatures of H. digitata and H. opuntia phylloids at high CO2 (1.01 per mil [parts per thousand] and 1.94 per mil, respectively) indicate increased photosynthetic uptake of CO2 over HCO3- potentially reducing dissolved inorganic carbon limitation at the seep site. Moreover, H. digitata and H. opuntia specimens transplanted for 14 d from the control to the seep site exhibited similar delta13C signatures as specimens grown there. These results suggest that the Halimeda spp. investigated can acclimatize and will likely still be capable to grow and calcify in inline image conditions exceeding most pessimistic future CO2 projections.
Resumo:
Porous seep-carbonates are exposed at mud volcanoes in the eastern Mediterranean Sea. The 13C-depleted aragonitic carbonates formed as a consequence of the anaerobic oxidation of methane in a shallow sub-surface environment. Besides the macroscopically visible cavernous fabric, extensive carbonate corrosion was revealed by detailed analysis. After erosion of the background sediments, the carbonates became exposed to oxygenated bottom waters that are periodically influenced by the release of methane and upward diffusion of hydrogen sulphide. We suggest that carbonate corrosion resulted from acidity locally produced by aerobic oxidation of methane and hydrogen sulphide in the otherwise, with respect to aragonite, oversaturated bottom waters. Although it remains to be tested whether the mechanisms of carbonate dissolution suggested herein are valid, this study reveals that a better estimate of the significance of corrosion is required to assess the amount of methane-derived carbon that is permanently fixed in seep-carbonates.
Resumo:
This study focuses on the vertical distribution of authigenic carbonates (aragonite and high Mg-calcite) in the form of finely disseminated precipitates as well as massive carbonate concretions present in and above gas hydrate bearing sediments of the Northern Congo Fan. Analyses of Ca, Mg, Sr and Ba in pore water, bulk sediments and authigenic carbonates were carried out on gravity cores taken from three pockmark structures (Hydrate Hole, Black Hole and Worm Hole). In addition, a background core was retrieved from an area not influenced by fluid seepage. Pore water Sr/Ca and Mg/Ca ratios are used to reveal the current depths of carbonate formation as well as the mineralogy of the authigenic precipitates. The Sr/Ca and Mg/Ca ratios of bulk sediments and massive carbonate concretions were applied to infer the presence and depth distribution of authigenic aragonite and high Mg-calcite, based on the approach presented by Bayon et al. [Bayon et al. (2007). Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments. Marine Geology 241(1-4), 93-109, doi:10.1016/j.margeo.2007.03.007]. We show that the approach developed by Bayon et al. (2007) for sediments of cold seeps of the Niger Delta is also suitable to identify the mineralogy of authigenic carbonates in pockmark sediments of the Congo Deep-Sea Fan. We expand this approach by combining interstitial with solid phase Sr/Ca and Mg/Ca ratios, which demonstrate that high Mg-calcite is the predominant authigenic carbonate that currently forms at the sulfate/methane reaction zone (SMRZ). This is the first study which investigates both solid phase and pore water signatures typical for either aragonite or high Mg-calcite precipitation for the same sediment cores and thus is able to identify active and fossil carbonate precipitation events. At all investigated pockmark sites fossil horizons of the SMRZ were deduced from high Mg-calcite located above and below the current depths of the SMRZ. Additionally, aragonite enrichments typical for high seepage rates were detected close to the sediment surface at these sites. However, active precipitation of aragonite as indicated by pore water characteristics only occurs at the Black Hole site. Dissolved and solid phase Ba concentrations were used to estimate the time the SMRZ was fixed at the current depths of the diagenetic barite fronts. The combined pore water and solid phase elemental ratios (Mg/Ca, Sr/Ca) and Ba concentrations allow the reconstruction of past changes in methane seepage at the investigated pockmark sites. At the Hydrate Hole and Worm Hole sites the time of high methane seepage was estimated to have ceased at least 600 yr BP. In contrast, a more recent change from a high flux to a more dormant stage must have occurred at the Black Hole site as evidenced by active aragonite precipitation at the sediment surface and a lack of diagenetic Ba enrichments.
Resumo:
Exotic limestone masses with silicified fossils, enclosed within deep-water marine siliciclastic sediments of the Early to Middle Miocene Astoria Formation, are exposed along the north shore of the Columbia River in southwestern Washington, USA. Samples from four localities were studied to clarify the origin and diagenesis of these limestone deposits. The bioturbated and reworked limestones contain a faunal assemblage resembling that of modern and Cenozoic deep-water methane-seeps. Five phases make up the paragenetic sequence: (1) micrite and microspar; (2) fibrous, banded and botryoidal aragonite cement, partially replaced by silica or recrystallized to calcite; (3) yellow calcite; (4) quartz replacing carbonate phases and quartz cement; and (5) equant calcite spar and pseudospar. Layers of pyrite frequently separate different carbonate phases and generations, indicating periods of corrosion. Negative d13Ccarbonate values as low as -37.6 per mill V-PDB reveal an uptake of methane-derived carbon. In other cases, d13Ccarbonate values as high as 7.1 per mill point to a residual, 13C-enriched carbon pool affected by methanogenesis. Lipid biomarkers include 13C-depleted, archaeal 2,6,10,15,19-pentamethylicosane (PMI; d13C: -128 per mill), crocetane and phytane, as well as various iso- and anteiso-carbon chains, most likely derived from sulphate-reducing bacteria. The biomarker inventory proves that the majority of the carbonates formed as a consequence of sulphate-dependent anaerobic oxidation of methane. Silicification of fossils and early diagenetic carbonate cements as well as the precipitation of quartz cement - also observed in other methane-seep limestones enclosed in sediments with abundant diatoms or radiolarians - is a consequence of a preceding increase of alkalinity due to anaerobic oxidation of methane, inducing the dissolution of silica skeletons. Once anaerobic oxidation of methane has ceased, the pH drops again and silica phases can precipitate.
Resumo:
Authigenic carbonates forming at an active methane-seep on the Makran accretionary prism mainly consist of aragonite in the form of microcrystalline, cryptocrystalline, and botryoidal phases. The d13Ccarbonate values are very negative (-49.0 to -44.0 per mill V-PDB), agreeing with microbial methane as dominant carbon source. The d18Ocarbonate values are exclusively positive (+ 3.0 to + 4.5 per mill V-PDB) and indicate precipitation in equilibrium with seawater at bottom water temperatures. The content of rare earth elements and yttrium (REE + Y) determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and solution ICP-MS varies for each aragonite variety, with early microcrystalline aragonite yielding the highest, cryptocrystalline aragonite intermediate, and later botryoidal aragonite the lowest REE + Y concentrations. Shale-normalised REE + Y patterns of different types of authigenic carbonate reflect distinct pore fluid compositions during precipitation: Microcrystalline aragonite shows high contents of middle rare earth elements (MREE), reflecting REE patterns ascribed to anoxic pore water. Cryptocrystalline aragonite exhibits a seawater-like REE + Y pattern at elevated total REE + Y concentrations, indicating higher concentrations of REEs in pore waters, which were influenced by seawater. Botryoidal aragonite is characterised by seawater-like REE + Y patterns at initial growth stages followed by an increase of light rare earth elements (LREE) with advancing crystal growth, reflecting changing pore fluid composition during precipitation of this cement. Conventional sample preparation involving micro-drilling of carbonate phases and subsequent solution ICP-MS does not allow to recognise such subtle changes in the REE + Y composition of individual carbonate phases. To be able to reconstruct the evolution of pore water composition during early diagenesis, an analytical approach is required that allows to track the changing elemental composition in a paragenetic sequence as well as in individual phases. High-resolution analysis of seep carbonates from the Makran accretionary prism by LA-ICP-MS reveals that pore fluid composition not only evolved in the course of the formation of different phases, but also changed during the precipitation of individual phases.
Resumo:
Different types of seep carbonates were recovered from the 'Kouilou pockmarks' on the Congo deep-sea fan in approximately 3100 m water depth. The carbonate aggregates are represented by pyritiferous nodules, crusts and slabs, tubes, and filled molds. The latter are interpreted to represent casts of former burrows of bivalves and holothurians. The nodules consisting of high-Mg-calcite apparently formed deeper within the sediments than the predominantly aragonitic crusts and slabs. Nodule formation was caused by anaerobic oxidation of methane dominantly involving archaea of the phylogenetic ANME-1 group, whereas aragonitic crusts resulted from the activity of archaea of the ANME-2 cluster. Evidence for this correlation is based on the distribution of specific biomarkers in the two types of carbonate aggregates, showing higher hydroxyarchaeol to archaeol ratios in the crusts as opposed to nodules. Formation of crusts closer to the seafloor than nodules is indicated by higher carbonate contents of crusts, probably reflecting higher porosities of the host sediment during carbonate formation. This finding is supported by lower d18O values of crusts, agreeing with precipitation from pore waters similar in composition to seawater. The aragonitic mineralogy of the crusts is also in accord with precipitation from sulfate-rich pore waters similar to seawater. Moreover, the interpretation regarding the relative depth of formation of crusts and nodules agrees with the commonly observed pattern that ANME-1 archaea tend to occur deeper in the sediment than members of the ANME-2 group. Methane represents the predominant carbon source of all carbonates (d13C values as low as -58.9 per mil V-PDB) and the encrusted archaeal biomarkers (d13C values as low as -140 per mil V-PDB). Oxygen isotope values of some nodular carbonates, ranging from + 3.9 to + 5.1per mil V-PDB, are too high for precipitation in equilibrium with seawater, probably reflecting the destabilization of gas hydrates, which are particularly abundant at the Kouilou pockmarks.
Resumo:
Vestimentiferan tube worms are prominent members of modern methane seep communities and are totally reliant as adults on symbiotic sulphide-oxidizing bacteria for their nutrition. The sulphide is produced in the sediment by a biochemical reaction called the anaerobic oxidation of methane (AOM). A well-studied species from the Gulf of Mexico shows that seep vestimentiferans 'mine' sulphide from the sediment using root-like, thin walled, permeable posterior tube extensions, which can also be used to pump sulphate and possibly hydrogen ions from the soft tissue back into the sediment to increase the local rate of AOM. The 'root-balls' of exhumed seep vestimentiferans are intimately associated with carbonate nodules, which are a result of AOM. We have studied vestimentiferan specimens and associated carbonates from seeps at the Kouilou pockmark field on the Congo deep-sea fan and find that some of the posterior 'root' tubes of living specimens are enclosed with carbonate indurated sediment and other, empty examples are partially or completely replaced by the carbonate mineral aragonite. This replacement occurs from the outside of the tube wall inwards and leaves fine-scale relict textures of the original organic tube wall. The process of mineralization is unknown, but is likely a result of post-mortem microbial decay of the tube wall proteins by microorganisms or the precipitation from locally high flux of AOM derived carbonate ions. The aragonite-replaced tubes from the Kouilou pockmarks show similar features to carbonate tubes in ancient seep deposits and make it more likely that many of these fossil tubes are those of vestimentiferans. These observations have implications for the supposed origination of this group, based on molecular divergence estimates.
Resumo:
The Regab pockmark is a large cold seep area located 10 km north of the Congo deep sea channel at about 3160 m water depth. The associated ecosystem hosts abundant fauna, dominated by chemosynthetic species such as the mussel Bathymodiolus aff. boomerang, vestimentiferan tubeworm Escarpia southwardae, and vesicomyid clams Laubiericoncha chuni and Christineconcha regab. The pockmark was visited during the West African Cold Seeps (WACS) cruise with RV Pourquoi Pas? in February 2011, and a 14,000-m**2 high-resolution videomosaic was constructed to map the most populated area and to describe the distribution of the dominant megafauna (mussels, tubeworms and clams). The results are compared with previous published works, which also included a videomosaic in the same area of the pockmark, based on images of the BIOZAIRE cruise in 2001. The 10-year variation of the faunal distribution is described and reveals that the visible abundance and distribution of the dominant megafaunal populations at Regab have not changed significantly, suggesting that the overall methane and sulfide fluxes that reach the faunal communities have been stable. Nevertheless, small and localized distribution changes in the clam community indicate that it is exposed to more transient fluxes than the other communities. Observations suggest that the main megafaunal aggregations at Regab are distributed around focused zones of high flux of methane-enriched fluids likely related to distinct smaller pockmark structures that compose the larger Regab pockmark. Although most results are consistent with the existing successional models for seep communities, some observations in the distribution of the Regab mussel population do not entirely fit into these models. This is likely due to the high heterogeneity of this site formed by the coalescence of several pockmarks. We hypothesize that the mussel distribution at Regab could also be controlled by the occurrence of zones of both intense methane fluxes and reduced efficiency of the anaerobic oxidation of methane possibly limiting tubeworm colonization.
Resumo:
Distributions of Mn, Fe, Cu, Cd, Cr, Co and Ni in sea water are investigated (42 samples, dissolved and particulate forms) in the vicinity of the underwater gas vent field on the northwestern slope of the Paramushir Island. While regular background distributions of the elements occur in the shore zone, there is a column of elevated concentrations of particulate matter, particulate Mn, and dissolved Mn, Fe, Cu, Cd, Cr, Co and Ni that coincides with location of the gas plume. This column can be traced as high as 780 m above the bottom. High metal concentrations in water of the plume are attributable to physico-chemical concentration at the phase interface; the source of elevated mineral concentrations is obviously flux of dissolved minerals from interstitial waters, which extends to considerable distances in vertical direction.
Resumo:
Fluids in subduction zones can influence seismogenic behaviour and prism morphology. The Eastern Makran subduction zone, offshore Pakistan, has a very thick incoming sediment section of up to 7.5 km, providing a large potential fluid source to the accretionary prism. A hydrate-related bottom simulating reflector (BSR), zones of high amplitude reflectivity, seafloor seep sites and reflective thrust faults are present across the accretionary prism, indicating the presence of fluids and suggesting active fluid migration. High amplitude free gas zones and seep sites are primarily associated with anticlinal hinge traps, and fluids here appear to be sourced from shallow biogenic sources and migrate to the seafloor along minor normal faults. There are no observed seep sites associated with the surface expression of the wedge thrust faults, potentially due to burial of the surface trace by failure of the steep thrust ridge slopes. Thrust fault reflectivity is restricted to the upper 3 km of sediment and the deeper décollement is non-reflective. We interpret that fluids and overpressure are not common in the deeper stratigraphic section. Thermal modelling of sediments at the deformation front suggests that the deeper sediment section is relatively dewatered and not currently contributing to fluid expulsion in the Makran accretionary prism.
Resumo:
An extensive submarine cold-seep area was discovered on the northern shelf of South Georgia during R/V Polarstern cruise ANT-XXIX/4 in spring 2013. Hydroacoustic surveys documented the presence of 133 gas bubble emissions, which were restricted to glacially-formed fjords and troughs. Video-based sea floor observations confirmed the sea floor origin of the gas emissions and spatially related microbial mats. Effective methane transport from these emissions into the hydrosphere was proven by relative enrichments of dissolved methane in near-bottom waters. Stable carbon isotopic signatures pointed to a predominant microbial methane formation, presumably based on high organic matter sedimentation in this region. Although known from many continental margins in the world's oceans, this is the first report of an active area of methane seepage in the Southern Ocean. Our finding of substantial methane emission related to a trough and fjord system, a topographical setting that exists commonly in glacially-affected areas, opens up the possibility that methane seepage is a more widespread phenomenon in polar and sub-polar regions than previously thought.
Resumo:
First videographic indication of an Antarctic cold seep ecosystem was recently obtained from the collapsed Larsen B ice shelf, western Weddell Sea (Domack et al., 2005). Within the framework of the R/V Polarstern expedition ANTXXIII-8, we revisited this area for geochemical, microbiological and further videographical examinations. During two dives with ROV Cherokee (MARUM, Bremen), several bivalve shell agglomerations of the seep-associated, chemosynthetic clam Calyptogena sp. were found in the trough of the Crane and Evans glacier. The absence of living clam specimens indicates that the flux of sulphide and hence the seepage activity is diminished at present. This impression was further substantiated by our geochemical observations. Concentrations of thermogenic methane were moderately elevated with 2 µM in surface sediments of a clam patch, increasing up to 9 µM at a sediment depth of about 1 m in the bottom sections of the sediment cores. This correlated with a moderate decrease in sulphate from about 28 mM at the surface down to 23.4 mM, an increase in sulphide to up to 1.43 mM and elevated rates of the anaerobic oxidation of methane (AOM) of up to 600 pmol cm**-3 d**-1 at about 1 m below the seafloor. Molecular analyses indicate that methanotrophic archaea related to ANME-3 are the most likely candidates mediating AOM in sediments of the Larsen B seep.