941 resultados para Bacterial programming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of culture-independent molecular screening techniques, especially based on 16S rRNA gene sequences, has allowed microbiologists to examine a facet of microbial diversity not necessarily reflected by the results of culturing studies. The bacterial community structure was studied for a pesticide-contaminated site that was subsequently remediated using an efficient degradative strain Arthrobacter protophormiae RKJ100. The efficiency of the bioremediation process was assessed by monitoring the depletion of the pollutant, and the effect of addition of an exogenous strain on the existing soil community structure was determined using molecular techniques. The 16S rRNA gene pool amplified from the soil metagenome was cloned and restriction fragment length polymorphism studies revealed 46 different phylotypes on the basis of similar banding patterns. Sequencing of representative clones of each phylotype showed that the community structure of the pesticide-contaminated soil was mainly constituted by Proteobacteria and Actinomycetes. Terminal restriction fragment length polymorphism analysis showed only nonsignificant changes in community structure during the process of bioremediation. Immobilized cells of strain RKJ100 enhanced pollutant degradation but seemed to have no detectable effects on the existing bacterial community structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the line opened by Kalai and Muller (1997), we explore new conditions on prefernce domains which make it possible to avoid Arrow's impossibility result. In our main theorem, we provide a complete characterization of the domains admitting nondictorial Arrovian social welfare functions with ties (i.e. including indifference in the range) by introducing a notion of strict decomposability. In the proof, we use integer programming tools, following an approach first applied to social choice theory by Sethuraman, Teo and Vohra ((2003), (2006)). In order to obtain a representation of Arrovian social welfare functions whose range can include indifference, we generalize Sethuraman et al.'s work and specify integer programs in which variables are allowed to assume values in the set {0, 1/2, 1}: indeed, we show that, there exists a one-to-one correspondence between solutions of an integer program defined on this set and the set of all Arrovian social welfare functions - without restrictions on the range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the integer programming approach introduced by Sethuraman, Teo, and Vohra (2003), we extend the analysis of the preference domains containing an inseparable ordered pair, initiated by Kalai and Ritz (1978). We show that these domains admit not only Arrovian social welfare functions \without ties," but also Arrovian social welfare functions \with ties," since they satisfy the strictly decomposability condition introduced by Busetto, Codognato, and Tonin (2012). Moreover, we go further in the comparison between Kalai and Ritz (1978)'s inseparability and Arrow (1963)'s single-peak restrictions, showing that the former condition is more \respectable," in the sense of Muller and Satterthwaite (1985).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil pseudomonads increase their competitiveness by producing toxic secondary metabolites, which inhibit competitors and repel predators. Toxin production is regulated by cell-cell signalling and efficiently protects the bacterial population. However, cell communication is unstable, and natural populations often contain signal blind mutants displaying an altered phenotype defective in exoproduct synthesis. Such mutants are weak competitors, and we hypothesized that their fitness depends on natural communities on the exoproducts of wild-type bacteria, especially defence toxins. We established mixed populations of wild-type and signal blind, non-toxic gacS-deficient mutants of Pseudomonas fluorescens CHA0 in batch and rhizosphere systems. Bacteria were grazed by representatives of the most important bacterial predators in soil, nematodes (Caenorhabditis elegans) and protozoa (Acanthamoeba castellanii). The gacS mutants showed a negative frequency-dependent fitness and could reach up to one-third of the population, suggesting that they rely on the exoproducts of the wild-type bacteria. Both predators preferentially consumed the mutant strain, but populations with a low mutant load were resistant to predation, allowing the mutant to remain competitive at low relative density. The results suggest that signal blind Pseudomonas increase their fitness by exploiting the toxins produced by wild-type bacteria, and that predation promotes the production of bacterial defence compounds by selectively eliminating non-toxic mutants. Therefore, predators not only regulate population dynamics of soil bacteria but also structure the genetic and phenotypic constitution of bacterial communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are controversial reports about the effect of aging on movement preparation, and it is unclear to which extent cognitive and/or motor related cerebral processes may be affected. This study examines the age effects on electro-cortical oscillatory patterns during various motor programming tasks, in order to assess potential differences according to the mode of action selection. Twenty elderly (EP, 60-84 years) and 20 young (YP, 20-29 years) participants with normal cognition underwent 3 pre-cued response tasks (S1-S2 paradigm). S1 carried either complete information on response side (Full; stimulus-driven motor preparation), no information (None; general motor alertness), or required free response side selection (Free; internally-driven motor preparation). Electroencephalogram (EEG) was recorded using 64 surface electrodes. Alpha (8-12 Hz) desynchronization (ERD)/synchronization (ERS) and motor-related amplitude asymmetries (MRAA) were analyzed during the S1-S2 interval. Reaction times (RTs) to S2 were slower in EP than YP, and in None than in the other 2 tasks. There was an Age x Task interaction due to increased RTs in Free compared to Full in EP only. Central bilateral and midline activation (alpha ERD) was smaller in EP than YP in None. In Full just before S2, readiness to move was reflected by posterior midline inhibition (alpha ERS) in both groups. In Free, such inhibition was present only in YP. Moreover, MRAA showed motor activity lateralization in both groups in Full, but only in YP in Free. The results indicate reduced recruitment of motor regions for motor alertness in the elderly. They further show less efficient cerebral processes subtending free selection of movement in elders, suggesting reduced capacity for internally-driven action with age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The few studies already published about phagocyte functions in Chediak-Higashi syndrome (CHS) has stated that neutrophils present slow rate of bacterial killing but normally ingest microorganisms. In the present study, both phagocytosis and killing of Staphylococcus aureus were verified to be in neutrophils from two patients with CHS when these functions were simultaneously evaluated by a fluorochrome phagocytosis assay. Electron microscopic examination showed morphologic differences among neutophils from CHS patients and normal neutrophils regarding the cytoplasmic structures and the aspects of the phagolysosomes. It was noteworthy the presence of giant phagolysosomes enclosing bacteria in active proliferation commonly observed in CHS neutrophils after 45 min of phagocytosis, wich corresponded with the impaired bactericidal activity of these leukocytes. The present results suggest that phagocytosis may also be defective in CHS, and point out to the sensitivity of the fluorochrome phagocytosis assay and its application in clinical laboratories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent advances in sequencing technologies have given all microbiology laboratories access to whole genome sequencing. Providing that tools for the automated analysis of sequence data and databases for associated meta-data are developed, whole genome sequencing will become a routine tool for large clinical microbiology laboratories. Indeed, the continuing reduction in sequencing costs and the shortening of the 'time to result' makes it an attractive strategy in both research and diagnostics. Here, we review how high-throughput sequencing is revolutionizing clinical microbiology and the promise that it still holds. We discuss major applications, which include: (i) identification of target DNA sequences and antigens to rapidly develop diagnostic tools; (ii) precise strain identification for epidemiological typing and pathogen monitoring during outbreaks; and (iii) investigation of strain properties, such as the presence of antibiotic resistance or virulence factors. In addition, recent developments in comparative metagenomics and single-cell sequencing offer the prospect of a better understanding of complex microbial communities at the global and individual levels, providing a new perspective for understanding host-pathogen interactions. Being a high-resolution tool, high-throughput sequencing will increasingly influence diagnostics, epidemiology, risk management, and patient care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Keller-Segel system has been widely proposed as a model for bacterial waves driven by chemotactic processes. Current experiments on E. coli have shown precise structure of traveling pulses. We present here an alternative mathematical description of traveling pulses at a macroscopic scale. This modeling task is complemented with numerical simulations in accordance with the experimental observations. Our model is derived from an accurate kinetic description of the mesoscopic run-and-tumble process performed by bacteria. This model can account for recent experimental observations with E. coli. Qualitative agreements include the asymmetry of the pulse and transition in the collective behaviour (clustered motion versus dispersion). In addition we can capture quantitatively the main characteristics of the pulse such as the speed and the relative size of tails. This work opens several experimental and theoretical perspectives. Coefficients at the macroscopic level are derived from considerations at the cellular scale. For instance the stiffness of the signal integration process turns out to have a strong effect on collective motion. Furthermore the bottom-up scaling allows to perform preliminary mathematical analysis and write efficient numerical schemes. This model is intended as a predictive tool for the investigation of bacterial collective motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The widespread misuse of drugs has increased the number of multiresistant bacteria, and this means that tools that can rapidly detect and characterize bacterial response to antibiotics are much needed in the management of infections. Various techniques, such as the resazurin-reduction assays, the mycobacterial growth indicator tube or polymerase chain reaction-based methods, have been used to investigate bacterial metabolism and its response to drugs. However, many are relatively expensive or unable to distinguish between living and dead bacteria. Here we show that the fluctuations of highly sensitive atomic force microscope cantilevers can be used to detect low concentrations of bacteria, characterize their metabolism and quantitatively screen (within minutes) their response to antibiotics. We applied this methodology to Escherichia coli and Staphylococcus aureus, showing that live bacteria produced larger cantilever fluctuations than bacteria exposed to antibiotics. Our preliminary experiments suggest that the fluctuation is associated with bacterial metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mosquitoes are vector of serious human and animal diseases, such as malaria, dengue, yellow fever, among others. The use of biological control agents has provide an environmentally safe and highly specific alternative to the use of chemical insecticides in the control of vector borne diseases. Bacillus thuringiensis and B. sphaericus produce toxic proteins to mosquito larvae. Great progress has been made on the biochemical and molecular characterization of such proteins and the genes encoding them. Nevertheless, the low residuality of these biological insecticides is one of the major drawbacks. This article present some interesting aspects of the mosquito larvae feeding habits and review the attempts that have been made to genetically engineer microorganisms that while are used by mosquito larvae as a food source should express the Bacillus toxin genes in order to improve the residuality and stability in the mosquito breeding ponds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Gastric and duodenal bacterial overgrowth frequently occurs in conditions where diminished acid secretion is present. Omeprazole inhibits acid secretion more effectively than cimetidine and might therefore more frequently cause bacterial overgrowth. AIM: This controlled prospective study compared the incidence of gastric and duodenal bacterial overgrowth in patients treated with omeprazole or cimetidine. METHODS: 47 outpatients with peptic disease were randomly assigned to a four week treatment regimen with omeprazole 20 mg or cimetidine 800 mg daily. Gastric and duodenal juice were obtained during upper gastrointestinal endoscopy and plated for anaerobic and aerobic organisms. RESULTS: Bacterial overgrowth (> or = 10(5) cfu/ml) was present in 53% of the patients receiving omeprazole and in 17% receiving cimetidine (p < 0.05). The mean (SEM) number of gastric and duodenal bacterial counts was 6.0 (0.2) and 5.0 (0.2) respectively in the omeprazole group and 4.0 (0.2) and 4.0 (0.1) in the cimetidine group (p < 0.001 and < 0.01; respectively). Faecal type bacteria were found in 30% of the patients with bacterial overgrowth. Basal gastric pH was higher in patients treated with omeprazole compared with cimetidine (4.2 (0.5) versus 2.0 (0.2); p < 0.001) and in patients with bacterial overgrowth compared with those without bacterial overgrowth (5.1 (0.6) versus 2.0 (0.1); p < 0.0001). The nitrate, nitrite, and nitrosamine values in gastric juice did not increase after treatment with either cimetidine or omeprazole. Serum concentrations of vitamin B12, beta carotene, and albumin were similar before and after treatment with both drugs. CONCLUSIONS: These results show that the incidence of gastric and duodenal bacterial overgrowth is considerably higher in patients treated with omeprazole compared with cimetidine. This can be explained by more pronounced inhibition of gastric acid secretion. No patient developed signs of malabsorption or an increase of N-nitroso compounds. The clinical significance of these findings needs to be assessed in studies with long-term treatment with omeprazole, in particular in patients belonging to high risk groups such as HIV infected and intensive care units patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophages are essential effector cells of innate immunity that play a pivotal role in the recognition and elimination of invasive microorganisms. Mediators released by activated macrophages orchestrate innate and adaptive immune host responses. The cytokine macrophage migration inhibitory factor (MIF) is an integral mediator of the innate immune system. Monocytes and macrophages constitutively express large amounts of MIF, which is rapidly released after exposure to bacterial toxins and cytokines. MIF exerts potent proinflammatory activities and is an important cytokine of septic shock. Recent investigations of the mechanisms by which MIF regulates innate immune responses to endotoxin and gram-negative bacteria indicate that MIF acts by modulating the expression of Toll-like receptor 4, the signal-transducing molecule of the lipopolysaccharide receptor complex. Given its role in innate immune responses to bacterial infections, MIF is a novel target for therapeutic intervention in patients with septic shock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epidemiologic typing of bacterial pathogens can be applied to answer a number of different questions: in case of outbreak, what is the extent and mode of transmission of epidemic clone(s )? In case of long-term surveillance, what is the prevalence over time and the geographic spread of epidemic and endemic clones in the population? A number of molecular typing methods can be used to classify bacteria based on genomic diversity into groups of closely-related isolates (presumed to arise from a common ancestor in the same chain of transmission) and divergent, epidemiologically-unrelated isolates (arising from independent sources of infection). Ribotyping, IS-RFLP fingerprinting, macrorestriction analysis of chromosomal DNA and PCR-fingerprinting using arbitrary sequence or repeat element primers are useful methods for outbreak investigations and regional surveillance. Library typing systems based on multilocus sequence-based analysis and strain-specific probe hybridization schemes are in development for the international surveillance of major pathogens like Mycobacterium tuberculosis. Accurate epidemiological interpretation of data obtained with molecular typing systems still requires additional research on the evolution rate of polymorphic loci in bacterial pathogens.