980 resultados para BRUTONS TYROSINE KINASE
Resumo:
Whole body glucose homeostasis is dependent on the action of insulin. In muscle and adipose tissues, insulin stimulates glucose uptake by inducing the translocation of vesicles containing the glucose transporter GLUT4 to the cell surface. While the mechanisms of insulin-regulated GLUT4 translocation are not fully understood, some signaling intermediates have been implicated in this process. Interestingly, som: of these intermediates, including IRS-1 and PI3K, have been localised to the same intracellular membrane fraction as the GLUT4 storage pool, designated here as the high-speed pellet (HSP) fraction. This raises the possibility that many of the downstream insulin signaling intermediates may be located within close proximity to intracellular GLUT4. The goal of this study was to test this hypothesis in 3T3-L1 adipocytes. A large proportion of adipocyte phosphoproteins co-fractionated in the HSP fraction. In an attempt to resolve insulin-regulatable phosphoproteins, we subjected P-32-labeled subcellular fractions to two-dimensional gel electrophoresis (2-DE). Insulin reproducibly stimulated the phosphorylation of 12 spots in the HSP fraction. Most of the HSP phosphoproteins were insoluble in the nonionic detergent Triton X-100, whereas integral membrane proteins such as GLUT4 and intracellular caveolin were soluble under the same conditions. These results suggest that insulin-regulatable phosphoproteins in adipocytes may be organized in microdomains within the cell and that this assembly may act as an efficient conductor of the signaling proteins to rapidly facilitate downstream biological responses. Further study is required to establish the molecular basis for these detergent-insoluble signaling complexes.
Resumo:
The basic framework for the JAK/STAT pathway is well documented. Recruitment of latent cytoplasmic STAT transcription factors to tyrosine phosphorylated docking sites on cytokine receptors and their JAK-mediated phosphorylation instigates their translocation to the nucleus and their ability to bind DNA, The biochemical processes underlying recruitment and activation of this pathway have commonly been studied in reconstituted in vitro systems using previously defined recombinant signaling components. We have dissected the Interferon gamma (IFN gamma) signal transduction pathway in crude extracts from wild-type and STAT1-negative mutant cell Lines by real-time BIAcore analysis, size-exclusion (SE) chromatography and immune-detection. The data indicate that in detergent-free cell extracts: (1) the phospho-tyrosine (Y440P)-containing peptide motif of the IFN gamma-receptor ct-chain interacts directly with STAT1, or STAT1 complexes, and no other protein; (2) nonactivated STAT 1 is present in a higher molecular weight complex(es) and, at least for IFN gamma-primed cells, is available for recruitment to the activated IFN gamma-receptor from only a subset of such complexes; (3) activated STAT1 is released from the receptor as a monomer.
Resumo:
Regulation of protein function is vital for the control of cellular processes. Proteins are often regulated by allosteric mechanisms, in which effecters bind to regulatory sites distinct from the active sites and alter protein function. Intrasteric regulation, directed at the active site and thus the counterpart of allosteric control, is now emerging as an important regulatory mechanism.
Resumo:
Granulocyte-macrophage colony stimulating factor (GM-CSF), Interleukin-3 (IL-3) and Interleukin-5 (IL-5) have overlapping, pleiotropic effects on hematopoietic cells, including neutrophils, eosinophils, monocytes and early progenitor cells. The high-affinity receptors for human GM-CSF, IL-3, and IL-5 share a common beta-subunit (h beta(c)), which is essential for signalling and plays a major role in recruiting intracellular signalling molecules. While activation of the cytoplasmic tyrosine kinase JAK2 appears to be the initiating event for signalling, the immediate events that trigger this are still unclear. We have isolated a number of activated mutants of h beta(c), which can be grouped into classes defined by their state of receptor phosphorylation, their requirement for alpha subunit as a cofactor, and their activities in primary cells and cell lines. We discuss these findings with regard to the stoichiometry, activation, and signalling of the normal GM-CSF/IL-3/IL-5 receptor complexes. Specifically, this work has implications for the role of the ligand-specific alpha-subunits in initiating the signalling through the beta-subunit, the role of beta subunit dimerization as a receptor trigger, and the function of receptor tyrosine phosphorylation in generating growth and survival signals. Based on the properties of the activated mutants and the recent structures of erythropoietin receptor (Epo-R) complexes, we propose a model in which (1) activation of h beta(c) can occur via alternative states that differ with respect to stoichiometry and subunit assembly, but which all mediate proliferative responses, and (2) each of the different classes of activated mutants mimics one of these alternative states. (C) 2000 International Society for Experimental Hematology. Published by Elsevier Science Inc.
Resumo:
Mutations of Kit at position D816 have been implicated in mastocytosis, acute myeloid leukaemia and germ cell tumours. Expression of this mutant Kit in cell lines results in factor-independent growth, differentiation and increased survival in vitro and tumourigenicity in vivo. Mutant D816VKit and wild-type Kit were expressed in murine primary haemopoietic cells and grown in stem cell factor (SCF) or the absence of factors. Expression of D816VKit did not lead to transformation as assessed by a colony assay, but resulted in enhanced differentiation of cells when compared to control cells. D816VKit induced an increase in the number of cells differentiating along the megakaryocyte lineage in the absence of factors. SCF had an added effect with an increase in differentiation of mast cells. Expression of wild-type Kit in the presence of SCF also failed to cause transformation and induced differentiation of mast cells and megakaryocytes. We conclude that constitutive expression of D816VKit in primary haemopoietic cells is not a sufficient transforming stimulus but leads to the survival and maturation of cells whose phenotype is influenced by the presence of SCF. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Purpose Dasatinib is a BCR-ABL inhibitor, 325-fold more potent than imatinib against unmutated BCR-ABL in vitro. Phase II studies have demonstrated efficacy and safety with dasatinib 70 mg twice daily in chronic-phase (CP) chronic myelogenous leukemia (CML) after imatinib treatment failure. In phase I, responses occurred with once-daily administration despite only intermittent BCR-ABL inhibition. Once-daily treatment resulted in less toxicity, suggesting that toxicity results from continuous inhibition of unintended targets. Here, a dose-and schedule-optimization study is reported. Patients and Methods In this open-label phase III trial, 670 patients with imatinib-resistant or -intolerant CP-CML were randomly assigned 1: 1: 1: 1 between four dasatinib treatment groups: 100 mg once daily, 50 mg twice daily, 140 mg once daily, or 70 mg twice daily. Results With minimum follow-up of 6 months (median treatment duration, 8 months; range, = 1 to 15 months), marked and comparable hematologic (complete, 86% to 92%) and cytogenetic (major, 54% to 59%; complete, 41% to 45%) response rates were observed across the four groups. Time to and duration of cytogenetic response were similar, as was progression-free survival (8% to 11% of patients experienced disease progression or died). Compared with the approved 70-mg twice-daily regimen, dasatinib 100 mg once daily resulted in significantly lower rates of pleural effusion (all grades, 7% v 16%; P = .024) and grade 3 to 4 thrombocytopenia (22% v 37%; P = .004), and fewer patients required dose interruption (51% v 68%), reduction (30% v 55%), or discontinuation (16% v 23%). Conclusion Dasatinib 100 mg once daily retains the efficacy of 70 mg twice daily with less toxicity. Intermittent target inhibition with tyrosine kinase inhibitors may preserve efficacy and reduce adverse events.
Resumo:
Background: Adrenocortical tumors are heterogeneous neoplasms with incompletely understood pathogenesis. IGF-II overexpression has been consistently demonstrated in adult adrenocortical carcinomas. Objectives: The objective of the study was to analyze expression of IGF-II and its receptor (IGF-IR) in pediatric and adult adrenocortical tumors and the effects of a selective IGF-IR kinase inhibitor (NVP-AEW541) on adrenocortical tumor cells. Patients: Fifty-seven adrenocortical tumors (37 adenomas and 20 carcinomas) from 23 children and 34 adults were studied. Methods: Gene expression was determined by quantitative real-time PCR. Cell proliferation and apoptosis were analyzed in NCI H295 cells and a new cell line established from a pediatric adrenocortical adenoma. Results: IGF-II transcripts were overexpressed in both pediatric adrenocortical carcinomas and adenomas. Otherwise, IGF-II was mainly overexpressed in adult adrenocortical carcinomas (270.5 +/- 130.2 vs. 16.1 +/- 13.3; P = 0.0001). IGF-IR expression was significantly higher in pediatric adrenocortical carcinomas than adenomas (9.1 +/- 3.1 vs. 2.6 +/- 0.3; P = 0.0001), whereas its expression was similar in adult adrenocortical carcinomas and adenomas. IGF-IR expression was a predictor of metastases in pediatric adrenocortical tumors in univariate analysis (hazard ratio 1.84; 95% confidence interval 1.28 -2.66; P = 0.01). Furthermore, NVP-AEW541 blocked cell proliferation in a dose-and time-dependent manner in both cell lines through a significant increase of apoptosis. Conclusion: IGF-IR overexpression was a biomarker of pediatric adrenocortical carcinomas. Additionally, a selective IGF-IR kinase inhibitor had antitumor effects in adult and pediatric adrenocortical tumor cell lines, suggesting that IGF-IR inhibitors represent a promising therapy for human adrenocortical carcinoma.
Resumo:
Purpose: Erlotinib, an oral tyrosine kinase inhibitor, is active against head-and-neck squamous cell carcinoma (HNSCC) and possibly has a synergistic interaction with chemotherapy and radiotherapy. We investigated the safety and efficacy of erlotinib added to cisplatin and radiotherapy in locally advanced HNSCC. Methods and Materials: In this Phase I/II trial 100 mg/m(2) of cisplatin was administered on Days 8, 29, and 50, and radiotherapy at 70 Gy was started on Day 8. During Phase I, the erlotinib dose was escalated (50 mg, 100 mg, and 150 mg) in consecutive cohorts of 3 patients, starting on Day 1 and continuing during radiotherapy. Dose-limiting toxicity was defined as any Grade 4 event requiring radiotherapy interruptions. Phase 11 was initiated 8 weeks after the last Phase I enrollment. Results: The study accrued 9 patients in Phase I and 28 in Phase II; all were evaluable for efficacy and safety. No dose-limiting toxicity occurred in Phase I, and the recommended Phase 11 dose was 150 mg. The most frequent nonhematologic toxicities were nausea/vomiting, dysphagia, stomatitis, xerostomia and in-field dermatitis, acneiform rash, and diarrhea. Of the 31 patients receiving a 150-mg daily dose of erlotinib, 23 (74%; 95% confidence interval, 56.8%-86.3%) had a complete response, 3 were disease free after salvage surgery, 4 had inoperable residual disease, and 1 died of sepsis during treatment. With a median 37 months` follow-up, the 3-year progression-free and overall survival rates were 61% and 72%, respectively. Conclusions: This combination appears safe, has encouraging activity, and deserves further studies in locally advanced HNSCC. (C) 2010 Elsevier Inc.
Resumo:
This review describes the current multidisciplinary management of gastrointestinal stromal tumor (GIST), which is the most common sarcoma of the gastrointestinal tract. Before 2001, surgery was the only effective therapy for GIST. The discovery of the central role of KIT proto-oncogene mutations in the pathogenesis of this tumor, and the development of specific inhibitors of KIT tyrosine kinase (TK) function, has changed the paradigm of treatment for GISTs. Imatinib and sunitinib are TK inhibitors with activity against GISTs. Their major established role in GIST is in the treatment of advanced disease. A growing body of literature and clinical experience support the potential perioperative use of these drugs. The adjuvant use of imatinib is based on retrospective series and limited prospective studies demonstrating that imatinib reduces the risk of recurrence. Ongoing studies are further defining the length of adjuvant therapy, as well as identifying the patients that could achieve the best results. Neoadjuvant treatment often decreases the tumor size, allowing a less morbid surgery, appears to be safe and beneficial for some patients, and therefore deserves further study.
Resumo:
SUBPOPULATIONS of olfactory receptor neurons, which are dispersed throughout the olfactory neuroepithelium, express specific cell surface carbohydrates and project to discrete regions of the olfactory bulb. Cell surface carbohydrates such as N-acetyl-lactosamine have been postulated to mediate sorting and selective fasciculation of discrete axon subpopulations during development of the olfactory pathway. Substrate-bound N-acetyl-lactosamine promotes neurite outgrowth by both clonal olfactory receptor neuron cell lines and olfactory receptor neurons in vitro, indicating that cell surface carbohydrates may be ligands for receptor-mediated stimulation of axon growth in vivo. In the present study, the role of transmembrane signaling in N-acetyl-lactosamine-stimulated neurite outgrowth was examined in the clonal olfactory neuron cell line 4.4.2. Substrate-bound N-acetyl-lactosamine stimulated neurite outgrowth which was specifically inhibited by antagonists to N- and L-type calcium channels and to tyrosine kinase phosphorylation. These results indicate that N-acetyl-lactosamine can evoke transmembrane receptor-mediated responses capable of influencing neurite outgrowth.
Resumo:
The cDNAs encoding wild type (WT) human receptor tyrosine kinase c-Kit and a constitutively activated mutant, V816Kit, were introduced into granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent early murine hemopoietic cells, which had been transformed with activated Myb, WTKit cells were able to grow in the presence of the human ligand for Kit, stem cell factor (SCF), but displayed reduced growth and clonogenic potential in either SCF or GM-CSF compared with the parental cells in GM-CSF. In contrast, V816Kit cells grew without factor at a higher rate than the parental cells in GM-CSF and displayed increased clonogenicity. Dissection of the growth characteristics in liquid culture showed that in the presence of appropriate factors, the different populations had similar proliferation rates, but that V816Kit profoundly increased cell survival compared with WTKit or parental cells, This suggests that the signals transduced by WTKit activated with SCF, and by V816Kit, were not identical. Also, WTKit and V816Kit-expressing cells both varied from the early myeloid progenitor phenotype of the parental cells and gave rise to a small number of large to giant adherent cells that expressed macrophage (alpha-naphthyl acetate) esterase and neutrophil (naphtol-AS-D-chloroacetate) esterase, were highly phagocytic and phenotypically resembled histiocytes. Thus, WTKit activated by SCF and V816Kit were able to induce differentiation in a proportion of Myb-transformed myeloid cells. The factor independent V816Kit cells, unlike the parental and WTKit expressing cells, were shown to produce tumors of highly mitotic, invasive cells at various stages of differentiation in syngeneic mice. These results imply that constitutively activated Kit can promote the development of differentiated myeloid tumors and that its oncogenic effects are not restricted to lineages (mast cell and B-cell acute lymphoblastic leukemia), which have been reported previously. Furthermore, the mixed populations of cells in culture and in the tumors phenotypically resembled the leukemic cells from patients with monocytic leukemia with histiocytic differentiation (acute myeloid leukemia-M5c), a newly proposed subtype of myeloid leukemia. (C) 1997 by The American Society of Hematology.
Resumo:
Annexin A1 (ANXA1) is a soluble cytoplasmic protein, moving to membranes when calcium levels are elevated. ANXA1 has also been shown to move to the nucleus or outside the cells, depending on tyrosine-kinase signalling, thus interfering in cytoskeletal organization and cell differentiation, mostly in inflammatory and neoplastic processes. The aim was to investigate subcellular patterns of immunohistochemical expression of ANXA1 in neoplastic and non-neoplastic samples from patients with laryngeal squamous cell carcinomas (LSCC), to elucidate the role of ANXA1 in laryngeal carcinogenesis. Serial analysis of gene expression experiments detected reduced expression of ANXA1 gene in LSCC compared with the corresponding non-neoplastic margins. Quantitative polymerase chain reaction confirmed ANXA1 low expression in 15 LSCC and eight matched normal samples. Thus, we investigated subcellular patterns of immunohistochemical expression of ANXA1 in 241 paraffin-embedded samples from 95 patients with LSCC. The results showed ANXA1 down-regulation in dysplastic, tumourous and metastatic lesions and provided evidence for the progressive migration of ANXA1 from the nucleus towards the membrane during laryngeal tumorigenesis. ANXA1 dysregulation was observed early in laryngeal carcinogenesis, in intra-epithelial neoplasms; it was not found related to prognostic parameters, such as nodal metastases.
Resumo:
BACKGROUND: Treatment recommendations have been developed for management of patients with chronic myeloid leukemia (CML). METHODS: A 30-item multiple-choice questionnaire was administered to 435 hematologists and oncohematologists in 16 Latin American countries. Physicians self-reported their diagnostic, therapeutic, and disease management strategies. RESULTS: Imatinib is available as initial therapy to 92% of physicians, and 42% of physicians have access to both second-generation tyrosine kinase inhibitors. Standard-dose imatinib is the preferred initial therapy for most patients, but 20% would manage a young patient initially with an allogeneic stem cell transplant from a sibling donor, and 10% would only offer hydroxyurea to an elderly patient. Seventy-two percent of responders perform routine cytogenetic analysis for monitoring patients on therapy, and 59% routinely use quantitative polymerase chain reaction. For patients who fail imatinib therapy, 61% would increase the dose of imatinib before considering change to a second-generation tyrosine kinase inhibitor, except for patients aged 60 years, for whom a switch to a second-generation tyrosine kinase inhibitor was the preferred choice. CONCLUSIONS: The answers to this survey provide insight into the management of patients with CML in Latin America. Some deviations from current recommendations were identified. Understanding the treatment patterns of patients with CML in broad population studies is important to identify needs and improve patient care. Cancer 2010;116:4991-5000. (C) 2070 American Cancer Society.
Resumo:
Objective - Synergistic interactions between aldosterone (Aldo) and angiotensin II (Ang II) have been implicated in vascular inflammation, fibrosis, and remodeling. Molecular mechanisms underlying this are unclear. We tested the hypothesis that c-Src activation, through receptor tyrosine kinase transactivation, is critically involved in synergistic interactions between Aldo and Ang II and that it is upstream of promigratory signaling pathways in vascular smooth muscle cells (VSMCs). Methods and Results - VSMCs from WKY rats were studied. At low concentrations (10(-10) mol/L) Aldo and Ang II alone did not influence c-Src activation, whereas in combination they rapidly increased phosphorylation (P<0.01), an effect blocked by eplerenone ( Aldo receptor antagonist) and irbesartan (AT1R blocker). This synergism was attenuated by AG1478 and AG1296 ( inhibitors of EGFR and PDGFR, respectively), but not by AG1024 (IGFR inhibitor). Aldo and Ang II costimulation induced c-Src-dependent activation of NAD(P)H oxidase and c-Src-independent activation of ERK1/2 (P<0.05), without effect on ERK5, p38MAPK, or JNK. Aldo/Ang II synergistically activated RhoA/Rho kinase and VSMC migration, effects blocked by PP2, apocynin, and fasudil, inhibitors of c-Src, NADPH oxidase, and Rho kinase, respectively. Conclusions - Aldo/Ang II synergistically activate c-Src, an immediate signaling response, through EGFR and PDGFR, but not IGFR transactivation. This is associated with activation of redox-regulated RhoA/Rho kinase, which controls VSMC migration. Although Aldo and Ang II interact to stimulate ERK1/2, such effects are c-Src-independent. These findings indicate differential signaling in Aldo-Ang II crosstalk and highlight the importance of c-Src in redox-sensitive RhoA, but not ERK1/2 signaling. Blockade of Aldo/Ang II may be therapeutically useful in vascular remodeling associated with abnormal VSMC migration.
Resumo:
Objective-Ras homolog gene family member A (RhoA)/Rho-kinase-mediated Ca(2+) sensitization is a critical component of constrictor responses. The present study investigates how angiotensin II activates RhoA. Methods and Results-Adenoviral vectors were used to manipulate the expression of regulator of G protein signaling (RGS) domain containing Rho-specific guanine exchange factors (RhoGEFs) and proline-rich tyrosine kinase 2 (PYK2), a nonreceptor tyrosine kinase, in primary rat vascular smooth muscle cells. As an evidence of RhoA activation, RhoA translocation and MYPT1 (the regulatory subunit of myosin light chain phosphatase) phosphorylation were analyzed by Western blot. Results showed that overexpression of PDZ-RhoGEF, but not p115-RhoGEF or leukemia-associated RhoGEF (LARG), enhanced RhoA activation by angiotensin II. Knockdown of PDZ-RhoGEF decreased RhoA activation by angiotensin II. PDZ-RhoGEF was phosphorylated and activated by PYK2 in vitro, and knockdown of PDZ-RhoGEF reduced RhoA activation by constitutively active PYK2, indicating that PDZ-RhoGEF links PYK2 to RhoA. Knockdown of PYK2 or PDZ-RhoGEF markedly decreased RhoA activation by A23187, a Ca(2+) ionophore, demonstrating that PYK2/PDZ-RhoGEF couples RhoA activation to Ca(2+). Conclusions-PYK2 and PDZ-RhoGEF are necessary for angiotensin II-induced RhoA activation and for Ca(2+) signaling to RhoA. (Arterioscler Thromb Vasc Biol. 2009;29:1657-1663.)