255 resultados para BONGO


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides environmental context to all samples from the Tara Oceans Expedition (2009-2013), about mesoscale features related to the sampling date, time and location. Includes calculated averages of mesaurements made concurrently at the sampling location and depth, and calculated averages from climatologies (AMODIS, VGPM) and satellite products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The valve area of Fragilariopsis kerguelensis, the most abundant diatom species in the Southern Ocean, strongly changes in size in response to varying conditions in the surface ocean. We examined the link, both in two iron fertilization experiments and in sediment samples covering several glacial Terminations, between size variability in this species and environmental conditions across the Antarctic Polar Front, including sea ice extent, sea surface temperature, and the input of eolian dust. The iron fertilization experiments show valve area to be positively correlated with iron concentrations in ambient waters, which suggests the possibility of a causal relation between valve size of Fragilariopsis kerguelensis and ambient surface water iron concentration. Larger valves are usually found during glacial times and thus seem to be related to lower sea surface temperature and wider sea ice coverage. Moreover, our results indicate that there usually is a strong correlation between larger valve size and increased input of eolian dust to the Southern Ocean. However, this correlation, obvious for the fertilization experiments and for glacial Terminations I, II, III, and V, does not seem to be valid for Termination VI, where size appears to be inversely correlated to dust input.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physiological condition of larval Antarctic krill was investigated during austral autumn 2004 and winter 2006 in the Lazarev Sea, to provide better understanding of a critical period of their life cycle. The condition of larvae was quantified in both seasons by determining their body length (BL), dry mass (DM), elemental- and biochemical composition, as well as stomach content analysis, and rates of metabolism and growth. Overall the larvae in autumn were in better condition under the ice than in open water, and for those under the ice there was a decrease in condition from autumn to winter. Thus growth rates of furcilia larvae in open water in autumn were similar to winter values under the ice (mean 0.008 mm/d), whereas autumn, under ice values were higher: 0.015 mm/d. Equivalent larval stages had up to 30% lower BL and 70% lower DM in winter compared to autumn, with mean oxygen consumption 44% lower (0.54 µl O2 DM/h). However, their ammonium excretion rates doubled (from 0.03-0.06 µg NH4 DM/h) so their mean O:N ratio was 46 in autumn and 15 in winter. Thus differing metabolic substrates were used between autumn and winter, suggesting a flexible overwintering strategy, as suggested for adults. The larvae were eating small copepods (Oithona spp.) and/or protozoans as well as autotrophic food under the ice. However, pelagic Chlorophyll a (Chl a) was a good predictor for growth in both seasons. The physics (current speed/ice topography) probably has a critical part to play in whether larval krill can exploit the food that may be associated with sea ice or be advected away from such suitable feeding habitat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metabolic rate of organisms may either be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law; or it may be considered a property of the organism that emerges as a result of the organism's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from previous compilations by other authors. Data were read from tables or digitized from graphs. Only measurements made on individuals of know size, or groups of individuals of similar and known size were included. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different elevations, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of tradeoffs that allow sufficient feeding and growth rates to balance mortality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metabolic rate of organisms may either be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law; or it may be considered a property of the organism that emerges as a result of the organism's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from previous compilations by other authors. Data were read from tables or digitized from graphs. Only measurements made on individuals of know size, or groups of individuals of similar and known size were included. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different elevations, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ~3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of tradeoffs that allow sufficient feeding and growth rates to balance mortality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides environmental context to all samples from the Tara Oceans Expedition (2009-2013), about water column features at the sampling location. Based on in situ measurements of... at the...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set is a registry of all samples collected during the Tara Oceans Expedition (2009-2013). The registry provides details about the sampling location and methodology of each sample. Uniform resource locators (URLs) offer direct links to additional contextual environmental data published at PANGAEA, and to the corresponding nucleotides data published at the European Nucleotides Archive (EBI-ENA).