961 resultados para BIOMASS BURNING AEROSOLS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vegetation changes in the Maya Lowlands during the Holocene are a result of changing climate conditions, solely anthropogenic activities, or interactions of both factors. As a consequence, it is difficult to assess how tropical ecosystems will cope with projected changes in precipitation and land-use intensification over the next decades. We investigated the role offire during the Holocene by combining macroscopic charcoal and the molecular fire proxies levoglucosan, mannosan and galactosan. Combining these two different fire proxies allows a more robust understanding of the complex history of fire re- gimes at different spatial scales during the Holocene. In order to infer changes in past biomass burning, we analysed a lake sediment core from Lake Peten Itza, Guatemala, and compared our results with millennial-scale vegetation and climate change available in the area. We detected three periods of high fire activity during the Holocene: 9500 e 6000 cal yr BP, 3700 cal yr BP and 2700 cal yr BP. We attribute the first maximum mostly to climate conditions and the last maximum to human activities. The rapid change between burned vegetation types at the 3700 cal yr BP fire maximum may result from human activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate changes in the North Atlantic region during the last glacial cycle were dominated by the slow waxing and waning of the North American ice sheet as well as by intermittent, millennial-scale Dansgaard–Oeschger climate oscillations. However, prior to the last deglaciation, the responses of North American vegetation and biomass burning to these climate variations are uncertain. Ammonium in Greenland ice cores, a product from North American soil emissions and biomass burning events, can help to fill this gap. Here we use continuous, high-resolution measurements of ammonium concentrations between 110,000 to 10,000 years ago from the Greenland NGRIP and GRIP ice cores to reconstruct North American wildfire activity and soil ammonium emissions. We find that on orbital timescales soil emissions increased under warmer climate conditions when vegetation expanded northwards into previously ice-covered areas. For millennial-scale interstadial warm periods during Marine Isotope Stage 3, the fire recurrence rate increased in parallel to the rapid warmings, whereas soil emissions rose more slowly, reflecting slow ice shrinkage and delayed ecosystem changes. We conclude that sudden warming events had little impact on soil ammonium emissions and ammonium transport to Greenland, but did result in a substantial increase in the frequency of North American wildfires.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radiocarbon (14C) measurements of both organic carbon (OC) and elemental carbon (EC) allow a more detailed source apportionment, leading to a full and unambiguous distinction and quantification of the contributions from non-fossil and fossil sources. A thermal-optical method with a commercial OC/EC analyzer to isolate water-insoluble OC (WIOC) and EC for their subsequent 14C measurement was applied for the first time to filtered precipitation samples collected at a costal site in Portugal and at a continental site in Switzerland. Our results show that WIOC in precipitation is dominated by non-fossil sources such as biogenic and biomass-burning emissions regardless of rain origins and seasons, whereas EC sources are shared by fossil-fuel combustion and biomass burning. In addition, monthly variation of WIOC in Switzerland was characterized by higher abundance in warm than in cold seasons, highlighting the importance of biogenic emissions to particulate carbon in rainwater. Samples with high particulate carbon concentrations in Portugal were found to be associated with increased biogenic input. Despite the importance of non-fossil sources, fossil emissions account for approximately 20% of particulate carbon in wet deposition for our study, which is in line with fossil contribution in bulk rainwater dissolved organic carbon as well as aerosol WIOC and EC estimated by the 14C approach from other studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Elemental carbon (EC) or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In this study, radiocarbon (14C) based source apportionment is used to distinguish between fossil fuel and biomass burning sources of EC isolated from aerosol filter samples collected in Beijing from June 2010 to May 2011. The 14C results demonstrate that EC is consistently dominated by fossil-fuel combustion throughout the whole year with a mean contribution of 79% ± 6% (ranging from 70% to 91%), though EC has a higher mean and peak concentrations in the cold season. The seasonal molecular pattern of hopanes (i.e., a class of organic markers mainly emitted during the combustion of different fossil fuels) indicates that traffic-related emissions are the most important fossil source in the warm period and coal combustion emissions are significantly increased in the cold season. By combining 14C based source apportionment results and picene (i.e., an organic marker for coal emissions) concentrations, relative contributions from coal (mainly from residential bituminous coal) and vehicle to EC in the cold period were estimated as 25 ± 4% and 50 ± 7%, respectively, whereas the coal combustion contribution was negligible or very small in the warm period.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of human activities on the fire regime in southern Switzerland was studied using (pre)historical charcoal and pollen data from lake sediments and statistical data from the 20th century. The cultural impact on forest fire was established by correlating charcoal-influx data with pollen percentages of anthropogenic indicators such as Plantago lanceolata, the Cerealia (sum of Avena t., Triticum t. and Hordeum t.) and Secale. During the 20th century, fire frequency was correlated with precipitation, dry and very dry periods and landscape management indicators. The effects of human activity on the fire regime are clearly recognisable since at least the Neolithic period. Using palaeoecological or statistical data, the variations in fire regime originating from anthropogenic actions may be differentiated from those due to climatic changes if they are sufficiently conspicuous.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wollongong, Australia is an urban site at the intersection of anthropogenic, biomass burning, biogenic and marine sources of atmospheric trace gases. The location offers a valuable opportunity to study drivers of atmospheric composition in the Southern Hemisphere. Here, a record of surface carbon monoxide (CO), methane (CH4) and carbon dioxide (CO2) was measured with an in situ Fourier transform infrared trace gas analyser between April 2011 and August 2014. Clean air was found to arrive at Wollongong in approximately 10% of air masses. Biomass burning influence was evident in the average annual cycle of clean air CO during austral spring. A significant negative short-term trend was found in clean air CO (-1.5 nmol/mol/a), driven by a reduction in northern Australian biomass burning. Significant short-term positive trends in clean air CH4 (5.4 nmol/mol/a) and CO2 (1.9 ?mol/mol/a) were consistent with the long-term global average trends. Polluted Wollongong air was investigated using wind-direction/wind-speed clustering, which revealed major influence from local urban and industrial sources from the south. High values of CH4, with anthropogenic DCH4/DCO2 enhancement ratio signatures, originated from the northwest, in the direction of local coal mining. A pollution climatology was developed for the region using back trajectory analysis and DO3/DCO enhancement ratios. Ozone production environments in austral spring and summer were associated with anticyclonic meteorology on the east coast of Australia, while ozone depletion environments in autumn and winter were associated with continental transport, or fast moving trajectories from southern latitudes. This implies the need to consider meteorological conditions when developing policies for controlling air quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although grassland and savanna occupy only a quarter of the world's vegetation, burning in these ecosystems accounts for roughly half the global carbon emissions from fire. However, the processes that govern changes in grassland burning are poorly understood, particularly on time scales beyond satellite records. We analyzed microcharcoal, sediments, and geochemistry in a high-resolution marine sediment core off Namibia to identify the processes that have controlled biomass burning in southern African grassland ecosystems under large, multimillennial-scale climate changes. Six fire cycles occurred during the past 170,000 y in southern Africa that correspond both in timing and magnitude to the precessional forcing of north-south shifts in the Intertropical Convergence Zone. Contrary to the conventional expectation that fire increases with higher temperatures and increased drought, we found that wetter and cooler climates cause increased burning in the study region, owing to a shift in rainfall amount and seasonality (and thus vegetation flammability). We also show that charcoal morphology (i.e., the particle's length-to-width ratio) can be used to reconstruct changes in fire activity as well as biome shifts over time. Our results provide essential context for understanding current and future grassland-fire dynamics and their associated carbon emissions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo- fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote-sensing observations of month-by-month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A 30 m.y. stable isotopic record of marine-deposited black carbon from regional terrestrial biomass burning from the northern South China Sea reveals photosynthetic pathway evolution for terrestrial ecosystems in the late Cenozoic. This record indicates that C3 plants negatively adjusted their isotopic discrimination and C4 plants appeared gradually as a component of land vegetation in East Asia since the early Miocene, a long time before sudden C4 expansion occurred during the late Miocene to the Pliocene. The changes in terrestrial ecosystems with time can be reasonably related to the evolution of East Asian monsoons, which are thought to have been induced by several intricate mechanisms during the late Cenozoic and could contribute significantly to the post-Miocene marine carbonate isotope decline.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sedimentary records from California's Northern Channel Islands and the adjacent Santa Barbara Basin (SBB) indicate intense regional biomass burning (wildfire) at the Ållerød-Younger Dryas boundary (~13.0-12.9 ka) (All age ranges in this paper are expressed in thousands of calendar years before present [ka]. Radiocarbon ages will be identified and clearly marked "14C years".). Multiproxy records in SBB Ocean Drilling Project (ODP) Site 893 indicate that these wildfires coincided with the onset of regional cooling and an abrupt vegetational shift from closed montane forest to more open habitats. Abrupt ecosystem disruption is evident on the Northern Channel Islands at the Ållerød-Younger Dryas boundary with the onset of biomass burning and resulting mass sediment wasting of the landscape. These wildfires coincide with the extinction of Mammuthus exilis [pygmy mammoth]. The earliest evidence for human presence on these islands at 13.1-12.9 ka (~11,000-10,900 14C years) is followed by an apparent 600-800 year gap in the archaeological record, which is followed by indications of a larger-scale colonization after 12.2 ka. Although a number of processes could have contributed to a post 18 ka decline in M. exilis populations (e.g., reduction of habitat due to sea-level rise and human exploitation of limited insular populations), we argue that the ultimate demise of M. exilis was more likely a result of continental scale ecosystem disruption that registered across North America at the onset of the Younger Dryas cooling episode, contemporaneous with the extinction of other megafaunal taxa. Evidence for ecosystem disruption at 13-12.9 ka on these offshore islands is consistent with the Younger Dryas boundary cosmic impact hypothesis [Firestone et al., 2007, doi:10.1073/pnas.0706977104].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Continuous and comparable atmospheric monitoring programs to study the transport and occurrence of persistent organic pollutants (POPs) in the atmosphere of remote regions is essential to better understand the global movement of these chemicals and to evaluate the effectiveness of international control measures. Key results from four main Arctic research stations, Alert (Canada), Pallas (Finland), Storhofdi (Iceland) and Zeppelin (Svalbard/Norway), where long-term monitoring have been carried out since the early 1990s, are summarized. We have also included a discussion of main results from various Arctic satellite stations in Canada, Russia, US (Alaska) and Greenland which have been operational for shorter time periods. Using the Digital Filtration temporal trend development technique, it was found that while some POPs showed more or less consistent declines during the 1990s, this reduction is less apparent in recent years at some sites. In contrast, polybrominated diphenyl ethers (PBDEs) were still found to be increasing by 2005 at Alert with doubling times of 3.5 years in the case of deca-BDE. Levels and patterns of most POPs in Arctic air are also showing spatial variability, which is typically explained by differences in proximity to suspected key source regions and long-range atmospheric transport potentials. Furthermore, increase in worldwide usage of certain pesticides, e.g. chlorothalonil and quintozene, which are contaminated with hexachlorobenzene (HCB), may result in an increase in Arctic air concentration of HCB. The results combined also indicate that both temporal and spatial patterns of POPs in Arctic air may be affected by various processes driven by climate change, such as reduced ice cover, increasing seawater temperatures and an increase in biomass burning in boreal regions as exemplified by the data from the Zeppelin and Alert stations. Further research and continued air monitoring are needed to better understand these processes and its future impact on the Arctic environment.

Relevância:

80.00% 80.00%

Publicador: