835 resultados para Automatic tagging of music
Resumo:
The identification of people by measuring some traits of individual anatomy or physiology has led to a specific research area called biometric recognition. This thesis is focused on improving fingerprint recognition systems considering three important problems: fingerprint enhancement, fingerprint orientation extraction and automatic evaluation of fingerprint algorithms. An effective extraction of salient fingerprint features depends on the quality of the input fingerprint. If the fingerprint is very noisy, we are not able to detect a reliable set of features. A new fingerprint enhancement method, which is both iterative and contextual, is proposed. This approach detects high-quality regions in fingerprints, selectively applies contextual filtering and iteratively expands like wildfire toward low-quality ones. A precise estimation of the orientation field would greatly simplify the estimation of other fingerprint features (singular points, minutiae) and improve the performance of a fingerprint recognition system. The fingerprint orientation extraction is improved following two directions. First, after the introduction of a new taxonomy of fingerprint orientation extraction methods, several variants of baseline methods are implemented and, pointing out the role of pre- and post- processing, we show how to improve the extraction. Second, the introduction of a new hybrid orientation extraction method, which follows an adaptive scheme, allows to improve significantly the orientation extraction in noisy fingerprints. Scientific papers typically propose recognition systems that integrate many modules and therefore an automatic evaluation of fingerprint algorithms is needed to isolate the contributions that determine an actual progress in the state-of-the-art. The lack of a publicly available framework to compare fingerprint orientation extraction algorithms, motivates the introduction of a new benchmark area called FOE (including fingerprints and manually-marked orientation ground-truth) along with fingerprint matching benchmarks in the FVC-onGoing framework. The success of such framework is discussed by providing relevant statistics: more than 1450 algorithms submitted and two international competitions.
Resumo:
In distributed systems like clouds or service oriented frameworks, applications are typically assembled by deploying and connecting a large number of heterogeneous software components, spanning from fine-grained packages to coarse-grained complex services. The complexity of such systems requires a rich set of techniques and tools to support the automation of their deployment process. By relying on a formal model of components, a technique is devised for computing the sequence of actions allowing the deployment of a desired configuration. An efficient algorithm, working in polynomial time, is described and proven to be sound and complete. Finally, a prototype tool implementing the proposed algorithm has been developed. Experimental results support the adoption of this novel approach in real life scenarios.
Resumo:
This thesis concerns artificially intelligent natural language processing systems that are capable of learning the properties of lexical items (properties like verbal valency or inflectional class membership) autonomously while they are fulfilling their tasks for which they have been deployed in the first place. Many of these tasks require a deep analysis of language input, which can be characterized as a mapping of utterances in a given input C to a set S of linguistically motivated structures with the help of linguistic information encoded in a grammar G and a lexicon L: G + L + C → S (1) The idea that underlies intelligent lexical acquisition systems is to modify this schematic formula in such a way that the system is able to exploit the information encoded in S to create a new, improved version of the lexicon: G + L + S → L' (2) Moreover, the thesis claims that a system can only be considered intelligent if it does not just make maximum usage of the learning opportunities in C, but if it is also able to revise falsely acquired lexical knowledge. So, one of the central elements in this work is the formulation of a couple of criteria for intelligent lexical acquisition systems subsumed under one paradigm: the Learn-Alpha design rule. The thesis describes the design and quality of a prototype for such a system, whose acquisition components have been developed from scratch and built on top of one of the state-of-the-art Head-driven Phrase Structure Grammar (HPSG) processing systems. The quality of this prototype is investigated in a series of experiments, in which the system is fed with extracts of a large English corpus. While the idea of using machine-readable language input to automatically acquire lexical knowledge is not new, we are not aware of a system that fulfills Learn-Alpha and is able to deal with large corpora. To instance four major challenges of constructing such a system, it should be mentioned that a) the high number of possible structural descriptions caused by highly underspeci ed lexical entries demands for a parser with a very effective ambiguity management system, b) the automatic construction of concise lexical entries out of a bulk of observed lexical facts requires a special technique of data alignment, c) the reliability of these entries depends on the system's decision on whether it has seen 'enough' input and d) general properties of language might render some lexical features indeterminable if the system tries to acquire them with a too high precision. The cornerstone of this dissertation is the motivation and development of a general theory of automatic lexical acquisition that is applicable to every language and independent of any particular theory of grammar or lexicon. This work is divided into five chapters. The introductory chapter first contrasts three different and mutually incompatible approaches to (artificial) lexical acquisition: cue-based queries, head-lexicalized probabilistic context free grammars and learning by unification. Then the postulation of the Learn-Alpha design rule is presented. The second chapter outlines the theory that underlies Learn-Alpha and exposes all the related notions and concepts required for a proper understanding of artificial lexical acquisition. Chapter 3 develops the prototyped acquisition method, called ANALYZE-LEARN-REDUCE, a framework which implements Learn-Alpha. The fourth chapter presents the design and results of a bootstrapping experiment conducted on this prototype: lexeme detection, learning of verbal valency, categorization into nominal count/mass classes, selection of prepositions and sentential complements, among others. The thesis concludes with a review of the conclusions and motivation for further improvements as well as proposals for future research on the automatic induction of lexical features.
Resumo:
Real living cell is a complex system governed by many process which are not yet fully understood: the process of cell differentiation is one of these. In this thesis work we make use of a cell differentiation model to develop gene regulatory networks (Boolean networks) with desired differentiation dynamics. To accomplish this task we have introduced techniques of automatic design and we have performed experiments using various differentiation trees. The results obtained have shown that the developed algorithms, except the Random algorithm, are able to generate Boolean networks with interesting differentiation dynamics. Moreover, we have presented some possible future applications and developments of the cell differentiation model in robotics and in medical research. Understanding the mechanisms involved in biological cells can gives us the possibility to explain some not yet understood dangerous disease, i.e the cancer. Le cellula è un sistema complesso governato da molti processi ancora non pienamente compresi: il differenziamento cellulare è uno di questi. In questa tesi utilizziamo un modello di differenziamento cellulare per sviluppare reti di regolazione genica (reti Booleane) con dinamiche di differenziamento desiderate. Per svolgere questo compito abbiamo introdotto tecniche di progettazione automatica e abbiamo eseguito esperimenti utilizzando vari alberi di differenziamento. I risultati ottenuti hanno mostrato che gli algoritmi sviluppati, eccetto l'algoritmo Random, sono in grado di poter generare reti Booleane con dinamiche di differenziamento interessanti. Inoltre, abbiamo presentato alcune possibili applicazioni e sviluppi futuri del modello di differenziamento in robotica e nella ricerca medica. Capire i meccanismi alla base del funzionamento cellulare può fornirci la possibilità di spiegare patologie ancora oggi non comprese, come il cancro.
Resumo:
Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.
Resumo:
In this descriptive study, we examined the influences and experiences motivating students to enter college-level music schools as reported by a population of precollegiate students auditioning (but not yet accepted) to music education degree programs. As a follow-up to a published pilot study, this research was designed to quantify the various experiences respondents had as part of their precollege school and community programs that related to teaching and music. Results indicate a strong connection between respondents’ primary musical background and future teaching interest. The top three influential experiences were related to high school ensemble membership (band, choir, orchestra), and the most influential group of individuals in the decision to become a music educator were high school ensemble directors. Respondents from all four primary background groups (band, choir, orchestra, and general or other) rated private lesson teaching as their second strongest future teaching interest, just behind teaching at the high school level in their primary background. Respondents rated parents as moderately influential on their desire to become a music teacher.