911 resultados para Automatic Query Refinement
Resumo:
Arterial baroreflex sensitivity estimated by pharmacological impulse stimuli depends on intrinsic signal variability and usually a subjective choice of blood pressure (BP) and heart rate (HR) values. We propose a semi-automatic method to estimate cardiovascular reflex sensitivity to bolus infusions of phenylephrine and nitroprusside. Beat-to-beat BP and HR time series for male Wistar rats (N = 13) were obtained from the digitized signal (sample frequency = 2 kHz) and analyzed by the proposed method (PRM) developed in Matlab language. In the PRM, time series were low-pass filtered with zero-phase distortion (3rd order Butterworth used in the forward and reverse direction) and presented graphically, and parameters were selected interactively. Differences between basal mean values and peak BP (deltaBP) and HR (deltaHR) values after drug infusions were used to calculate baroreflex sensitivity indexes, defined as the deltaHR/deltaBP ratio. The PRM was compared to the method traditionally (TDM) employed by seven independent observers using files for reflex bradycardia (N = 43) and tachycardia (N = 61). Agreement was assessed by Bland and Altman plots. Dispersion among users, measured as the standard deviation, was higher for TDM for reflex bradycardia (0.60 ± 0.46 vs 0.21 ± 0.26 bpm/mmHg for PRM, P < 0.001) and tachycardia (0.83 ± 0.62 vs 0.28 ± 0.28 bpm/mmHg for PRM, P < 0.001). The advantage of the present method is related to its objectivity, since the routine automatically calculates the desired parameters according to previous software instructions. This is an objective, robust and easy-to-use tool for cardiovascular reflex studies.
Resumo:
The Saimaa ringed seal is one of the most endangered seals in the world. It is a symbol of Lake Saimaa and a lot of effort have been applied to save it. Traditional methods of seal monitoring include capturing the animals and installing sensors on their bodies. These invasive methods for identifying can be painful and affect the behavior of the animals. Automatic identification of seals using computer vision provides a more humane method for the monitoring. This Master's thesis focuses on automatic image-based identification of the Saimaa ringed seals. This consists of detection and segmentation of a seal in an image, analysis of its ring patterns, and identification of the detected seal based on the features of the ring patterns. The proposed algorithm is evaluated with a dataset of 131 individual seals. Based on the experiments with 363 images, 81\% of the images were successfully segmented automatically. Furthermore, a new approach for interactive identification of Saimaa ringed seals is proposed. The results of this research are a starting point for future research in the topic of seal photo-identification.
Resumo:
The problem of automatic recognition of the fish from the video sequences is discussed in this Master’s Thesis. This is a very urgent issue for many organizations engaged in fish farming in Finland and Russia because the process of automation control and counting of individual species is turning point in the industry. The difficulties and the specific features of the problem have been identified in order to find a solution and propose some recommendations for the components of the automated fish recognition system. Methods such as background subtraction, Kalman filtering and Viola-Jones method were implemented during this work for detection, tracking and estimation of fish parameters. Both the results of the experiments and the choice of the appropriate methods strongly depend on the quality and the type of a video which is used as an input data. Practical experiments have demonstrated that not all methods can produce good results for real data, whereas on synthetic data they operate satisfactorily.
Resumo:
In the field of molecular biology, scientists adopted for decades a reductionist perspective in their inquiries, being predominantly concerned with the intricate mechanistic details of subcellular regulatory systems. However, integrative thinking was still applied at a smaller scale in molecular biology to understand the underlying processes of cellular behaviour for at least half a century. It was not until the genomic revolution at the end of the previous century that we required model building to account for systemic properties of cellular activity. Our system-level understanding of cellular function is to this day hindered by drastic limitations in our capability of predicting cellular behaviour to reflect system dynamics and system structures. To this end, systems biology aims for a system-level understanding of functional intraand inter-cellular activity. Modern biology brings about a high volume of data, whose comprehension we cannot even aim for in the absence of computational support. Computational modelling, hence, bridges modern biology to computer science, enabling a number of assets, which prove to be invaluable in the analysis of complex biological systems, such as: a rigorous characterization of the system structure, simulation techniques, perturbations analysis, etc. Computational biomodels augmented in size considerably in the past years, major contributions being made towards the simulation and analysis of large-scale models, starting with signalling pathways and culminating with whole-cell models, tissue-level models, organ models and full-scale patient models. The simulation and analysis of models of such complexity very often requires, in fact, the integration of various sub-models, entwined at different levels of resolution and whose organization spans over several levels of hierarchy. This thesis revolves around the concept of quantitative model refinement in relation to the process of model building in computational systems biology. The thesis proposes a sound computational framework for the stepwise augmentation of a biomodel. One starts with an abstract, high-level representation of a biological phenomenon, which is materialised into an initial model that is validated against a set of existing data. Consequently, the model is refined to include more details regarding its species and/or reactions. The framework is employed in the development of two models, one for the heat shock response in eukaryotes and the second for the ErbB signalling pathway. The thesis spans over several formalisms used in computational systems biology, inherently quantitative: reaction-network models, rule-based models and Petri net models, as well as a recent formalism intrinsically qualitative: reaction systems. The choice of modelling formalism is, however, determined by the nature of the question the modeler aims to answer. Quantitative model refinement turns out to be not only essential in the model development cycle, but also beneficial for the compilation of large-scale models, whose development requires the integration of several sub-models across various levels of resolution and underlying formal representations.
Resumo:
A long-standing debate in the literature is whether attention can form two or more independent spatial foci in addition to the well-known unique spatial focus. There is evidence that voluntary visual attention divides in space. The possibility that this also occurs for automatic visual attention was investigated here. Thirty-six female volunteers were tested. In each trial, a prime stimulus was presented in the left or right visual hemifield. This stimulus was characterized by the blinking of a superior, middle or inferior ring, the blinking of all these rings, or the blinking of the superior and inferior rings. A target stimulus to which the volunteer should respond with the same side hand or a target stimulus to which she should not respond was presented 100 ms later in a primed location, a location between two primed locations or a location in the contralateral hemifield. Reaction time to the positive target stimulus in a primed location was consistently shorter than reaction time in the horizontally corresponding contralateral location. This attentional effect was significantly smaller or absent when the positive target stimulus appeared in the middle location after the double prime stimulus. These results suggest that automatic visual attention can focus on two separate locations simultaneously, to some extent sparing the region in between.
Resumo:
The present report describes the development of a technique for automatic wheezing recognition in digitally recorded lung sounds. This method is based on the extraction and processing of spectral information from the respiratory cycle and the use of these data for user feedback and automatic recognition. The respiratory cycle is first pre-processed, in order to normalize its spectral information, and its spectrogram is then computed. After this procedure, the spectrogram image is processed by a two-dimensional convolution filter and a half-threshold in order to increase the contrast and isolate its highest amplitude components, respectively. Thus, in order to generate more compressed data to automatic recognition, the spectral projection from the processed spectrogram is computed and stored as an array. The higher magnitude values of the array and its respective spectral values are then located and used as inputs to a multi-layer perceptron artificial neural network, which results an automatic indication about the presence of wheezes. For validation of the methodology, lung sounds recorded from three different repositories were used. The results show that the proposed technique achieves 84.82% accuracy in the detection of wheezing for an isolated respiratory cycle and 92.86% accuracy for the detection of wheezes when detection is carried out using groups of respiratory cycles obtained from the same person. Also, the system presents the original recorded sound and the post-processed spectrogram image for the user to draw his own conclusions from the data.
Resumo:
In vivo proton magnetic resonance spectroscopy (¹H-MRS) is a technique capable of assessing biochemical content and pathways in normal and pathological tissue. In the brain, ¹H-MRS complements the information given by magnetic resonance images. The main goal of the present study was to assess the accuracy of ¹H-MRS for the classification of brain tumors in a pilot study comparing results obtained by manual and semi-automatic quantification of metabolites. In vivo single-voxel ¹H-MRS was performed in 24 control subjects and 26 patients with brain neoplasms that included meningiomas, high-grade neuroglial tumors and pilocytic astrocytomas. Seven metabolite groups (lactate, lipids, N-acetyl-aspartate, glutamate and glutamine group, total creatine, total choline, myo-inositol) were evaluated in all spectra by two methods: a manual one consisting of integration of manually defined peak areas, and the advanced method for accurate, robust and efficient spectral fitting (AMARES), a semi-automatic quantification method implemented in the jMRUI software. Statistical methods included discriminant analysis and the leave-one-out cross-validation method. Both manual and semi-automatic analyses detected differences in metabolite content between tumor groups and controls (P < 0.005). The classification accuracy obtained with the manual method was 75% for high-grade neuroglial tumors, 55% for meningiomas and 56% for pilocytic astrocytomas, while for the semi-automatic method it was 78, 70, and 98%, respectively. Both methods classified all control subjects correctly. The study demonstrated that ¹H-MRS accurately differentiated normal from tumoral brain tissue and confirmed the superiority of the semi-automatic quantification method.
Resumo:
Previous assessment of verticality by means of rod and rod and frame tests indicated that human subjects can be more (field dependent) or less (field independent) influenced by a frame placed around a tilted rod. In the present study we propose a new approach to these tests. The judgment of visual verticality (rod test) was evaluated in 50 young subjects (28 males, ranging in age from 20 to 27 years) by randomly projecting a luminous rod tilted between -18 and +18° (negative values indicating left tilts) onto a tangent screen. In the rod and frame test the rod was displayed within a luminous fixed frame tilted at +18 or -18°. Subjects were instructed to verbally indicate the rod’s inclination direction (forced choice). Visual dependency was estimated by means of a Visual Index calculated from rod and rod and frame test values. Based on this index, volunteers were classified as field dependent, intermediate and field independent. A fourth category was created within the field-independent subjects for whom the amount of correct guesses in the rod and frame test exceeded that of the rod test, thus indicating improved performance when a surrounding frame was present. In conclusion, the combined use of subjective visual vertical and the rod and frame test provides a specific and reliable form of evaluation of verticality in healthy subjects and might be of use to probe changes in brain function after central or peripheral lesions.
Supplier provided automatic warehouse replenishment solutions in pharmaceutical diagnostics industry
Resumo:
In this work, bromelain was recovered from ground pineapple stem and rind by means of precipitation with alcohol at low temperature. Bromelain is the name of a group of powerful protein-digesting, or proteolytic, enzymes that are particularly useful for reducing muscle and tissue inflammation and as a digestive aid. Temperature control is crucial to avoid irreversible protein denaturation and consequently to improve the quality of the enzyme recovered. The process was carried out alternatively in two fed-batch pilot tanks: a glass tank and a stainless steel tank. Aliquots containing 100 mL of pineapple aqueous extract were fed into the tank. Inside the jacketed tank, the protein was exposed to unsteady operating conditions during the addition of the precipitating agent (ethanol 99.5%) because the dilution ratio "aqueous extract to ethanol" and heat transfer area changed. The coolant flow rate was manipulated through a variable speed pump. Fine tuned conventional and adaptive PID controllers were on-line implemented using a fieldbus digital control system. The processing performance efficiency was enhanced and so was the quality (enzyme activity) of the product.
Resumo:
The impact of automatic and manual shelling methods during manual/visual sorting of different batches of Brazil nuts from the 2010 and 2011 harvests was evaluated in order to investigate aflatoxin prevention.The samples were tested as follows: in-shell, shell, shelled, and pieces in order to evaluate the moisture content (mc), water activity (Aw), and total aflatoxin (LOD = 0.3 µg/kg and LOQ 0.85 µg/kg) at the Brazil nut processing plant. The results of aflatoxins obtained for the manually shelled nut samples ranged from 3.0 to 60.3 µg/g and from 2.0 to 31.0 µg/g for the automatically shelled samples. All samples showed levels of mc below the limit of 15%; on the other hand, shelled samples from both harvests showed levels of Aw above the limit. There were no significant differences concerning the manual or automatic shelling results during the sorting stages. On the other hand, the visual sorting was effective in decreasing the aflatoxin contamination in both methods.
Resumo:
Building a computational model for complex biological systems is an iterative process. It starts from an abstraction of the process and then incorporates more details regarding the specific biochemical reactions which results in the change of the model fit. Meanwhile, the model’s numerical properties such as its numerical fit and validation should be preserved. However, refitting the model after each refinement iteration is computationally expensive resource-wise. There is an alternative approach which ensures the model fit preservation without the need to refit the model after each refinement iteration. And this approach is known as quantitative model refinement. The aim of this thesis is to develop and implement a tool called ModelRef which does the quantitative model refinement automatically. It is both implemented as a stand-alone Java application and as one of Anduril framework components. ModelRef performs data refinement of a model and generates the results in two different well known formats (SBML and CPS formats). The development of this tool successfully reduces the time and resource needed and the errors generated as well by traditional reiteration of the whole model to perform the fitting procedure.
Resumo:
Three dimensional model design is a well-known and studied field, with numerous real-world applications. However, the manual construction of these models can often be time-consuming to the average user, despite the advantages o ffered through computational advances. This thesis presents an approach to the design of 3D structures using evolutionary computation and L-systems, which involves the automated production of such designs using a strict set of fitness functions. These functions focus on the geometric properties of the models produced, as well as their quantifiable aesthetic value - a topic which has not been widely investigated with respect to 3D models. New extensions to existing aesthetic measures are discussed and implemented in the presented system in order to produce designs which are visually pleasing. The system itself facilitates the construction of models requiring minimal user initialization and no user-based feedback throughout the evolutionary cycle. The genetic programming evolved models are shown to satisfy multiple criteria, conveying a relationship between their assigned aesthetic value and their perceived aesthetic value. Exploration into the applicability and e ffectiveness of a multi-objective approach to the problem is also presented, with a focus on both performance and visual results. Although subjective, these results o er insight into future applications and study in the fi eld of computational aesthetics and automated structure design.
Resumo:
This thesis describes research in which genetic programming is used to automatically evolve shape grammars that construct three dimensional models of possible external building architectures. A completely automated fitness function is used, which evaluates the three dimensional building models according to different geometric properties such as surface normals, height, building footprint, and more. In order to evaluate the buildings on the different criteria, a multi-objective fitness function is used. The results obtained from the automated system were successful in satisfying the multiple objective criteria as well as creating interesting and unique designs that a human-aided system might not discover. In this study of evolutionary design, the architectures created are not meant to be fully functional and structurally sound blueprints for constructing a building, but are meant to be inspirational ideas for possible architectural designs. The evolved models are applicable for today's architectural industries as well as in the video game and movie industries. Many new avenues for future work have also been discovered and highlighted.