925 resultados para Automatic Check-in
Automatic Detection of Process Instabilities in Wastewater Treatment by Principal Component Analysis
Resumo:
This report summarizes our results from security analysis covering all 57 competitions for authenticated encryption: security, applicability, and robustness (CAESAR) first-round candidates and over 210 implementations. We have manually identified security issues with three candidates, two of which are more serious, and these ciphers have been withdrawn from the competition. We have developed a testing framework, BRUTUS, to facilitate automatic detection of simple security lapses and susceptible statistical structures across all ciphers. From this testing, we have security usage notes on four submissions and statistical notes on a further four. We highlight that some of the CAESAR algorithms pose an elevated risk if employed in real-life protocols due to a class of adaptive-chosen-plaintext attacks. Although authenticated encryption with associated data are often defined (and are best used) as discrete primitives that authenticate and transmit only complete messages, in practice, these algorithms are easily implemented in a fashion that outputs observable ciphertext data when the algorithm has not received all of the (attacker-controlled) plaintext. For an implementor, this strategy appears to offer seemingly harmless and compliant storage and latency advantages. If the algorithm uses the same state for secret keying information, encryption, and integrity protection, and the internal mixing permutation is not cryptographically strong, an attacker can exploit the ciphertext–plaintext feedback loop to reveal secret state information or even keying material. We conclude that the main advantages of exhaustive, automated cryptanalysis are that it acts as a very necessary sanity check for implementations and gives the cryptanalyst insights that can be used to focus more specific attack methods on given candidates.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
The span of writer identification extends to broad domes like digital rights administration, forensic expert decisionmaking systems, and document analysis systems and so on. As the success rate of a writer identification scheme is highly dependent on the features extracted from the documents, the phase of feature extraction and therefore selection is highly significant for writer identification schemes. In this paper, the writer identification in Malayalam language is sought for by utilizing feature extraction technique such as Scale Invariant Features Transform (SIFT).The schemes are tested on a test bed of 280 writers and performance evaluated
Resumo:
This thesis proposes a framework for identifying the root-cause of a voltage disturbance, as well as, its source location (upstream/downstream) from the monitoring place. The framework works with three-phase voltage and current waveforms collected in radial distribution networks without distributed generation. Real-world and synthetic waveforms are used to test it. The framework involves features that are conceived based on electrical principles, and assuming some hypothesis on the analyzed phenomena. Features considered are based on waveforms and timestamp information. Multivariate analysis of variance and rule induction algorithms are applied to assess the amount of meaningful information explained by each feature, according to the root-cause of the disturbance and its source location. The obtained classification rates show that the proposed framework could be used for automatic diagnosis of voltage disturbances collected in radial distribution networks. Furthermore, the diagnostic results can be subsequently used for supporting power network operation, maintenance and planning.