919 resultados para Auditory evoked potential


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we isolated the alkaloid erysothrine from the hydroalcoholic extract of flowers from E. mulungu and screened for its anticonvulsant and anxiolytic actions based on neuroethological and neurochemical experiments. Our results showed that the administration of erysothrine inhibited seizures evoked by bicuculline, PTZ, NMDA and most remarkably, kainic acid. Also, erysothrine induced an increase in the number of entries but not in the time spent in the open arms of the EPM. However, we did not notice any alterations in the light-dark choice or in the open-field tests. In preliminary neurochemistry tests, we also showed that erysothrine (0.001-10 mu g/mL) did not alter the GABA or glutamate synaptossomal uptake and binding. Altogether, our results describe an alkaloid with anticonvulsant activity and mild anxiolytic activity that might be considered well tolerated as it does not alter the general behavior of the animals in the used doses. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compared the effectiveness of the multifocal visual evoked cortical potentials (mfVEP) elicited by pattern pulse stimulation with that of pattern reversal in producing reliable responses (signal-to-noise ratio >1.359). Participants were 14 healthy subjects. Visual stimulation was obtained using a 60-sector dartboard display consisting of 6 concentric rings presented in either pulse or reversal mode. Each sector, consisting of 16 checks at 99% Michelson contrast and 80 cd/m² mean luminance, was controlled by a binary m-sequence in the time domain. The signal-to-noise ratio was generally larger in the pattern reversal than in the pattern pulse mode. The number of reliable responses was similar in the central sectors for the two stimulation modes. At the periphery, pattern reversal showed a larger number of reliable responses. Pattern pulse stimuli performed similarly to pattern reversal stimuli to generate reliable waveforms in R1 and R2. The advantage of using both protocols to study mfVEP responses is their complementarity: in some patients, reliable waveforms in specific sectors may be obtained with only one of the two methods. The joint analysis of pattern reversal and pattern pulse stimuli increased the rate of reliability for central sectors by 7.14% in R1, 5.35% in R2, 4.76% in R3, 3.57% in R4, 2.97% in R5, and 1.78% in R6. From R1 to R4 the reliability to generate mfVEPs was above 70% when using both protocols. Thus, for a very high reliability and thorough examination of visual performance, it is recommended to use both stimulation protocols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initiation and maintenance of physiological and pathophysiological oscillatory activity depends on the synaptic interactions within neuronal networks. We studied the mechanisms underlying evoked transient network oscillation in acute slices of the adolescent rat somatosensory cortex and modeled its underpinning mechanisms. Oscillations were evoked by brief spatially distributed noisy extracellular stimulation, delivered via bipolar electrodes. Evoked transient network oscillation was detected with multi-neuron patch-clamp recordings under different pharmacological conditions. The observed oscillations are in the frequency range of 2-5 Hz and consist of 4-12 mV large, 40-150 ms wide compound synaptic events with rare overlying action potentials. This evoked transient network oscillation is only weakly expressed in the somatosensory cortex and requires increased [K+]o of 6.25 mM and decreased [Ca2+]o of 1.5 mM and [Mg2+]o of 0.5 mM. A peak in the cross-correlation among membrane potential in layers II/III, IV and V neurons reflects the underlying network-driven basis of the evoked transient network oscillation. The initiation of the evoked transient network oscillation is accompanied by an increased [K+]o and can be prevented by the K+ channel blocker quinidine. In addition, a shift of the chloride reversal potential takes place during stimulation, resulting in a depolarizing type A GABA (GABAA) receptor response. Blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA), N-methyl-D-aspartate (NMDA), or GABA(A) receptors as well as gap junctions prevents evoked transient network oscillation while a reduction of AMPA or GABA(A) receptor desensitization increases its duration and amplitude. The apparent reversal potential of -27 mV of the evoked transient network oscillation, its pharmacological profile, as well as the modeling results suggest a mixed contribution of glutamatergic, excitatory GABAergic, and gap junctional conductances in initiation and maintenance of this oscillatory activity. With these properties, evoked transient network oscillation resembles epileptic afterdischarges more than any other form of physiological or pathophysiological neocortical oscillatory activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auditory neuroscience has not tapped fMRI's full potential because of acoustic scanner noise emitted by the gradient switches of conventional echoplanar fMRI sequences. The scanner noise is pulsed, and auditory cortex is particularly sensitive to pulsed sounds. Current fMRI approaches to avoid stimulus-noise interactions are temporally inefficient. Since the sustained BOLD response to pulsed sounds decreases with repetition rate and becomes minimal with unpulsed sounds, we developed an fMRI sequence emitting continuous rather than pulsed gradient sound by implementing a novel quasi-continuous gradient switch pattern. Compared to conventional fMRI, continuous-sound fMRI reduced auditory cortex BOLD baseline and increased BOLD amplitude with graded sound stimuli, short sound events, and sounds as complex as orchestra music with preserved temporal resolution. Response in subcortical auditory nuclei was enhanced, but not the response to light in visual cortex. Finally, tonotopic mapping using continuous-sound fMRI demonstrates that enhanced functional signal-to-noise in BOLD response translates into improved spatial separability of specific sound representations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALE: Olanzapine is an atypical antipsychotic drug with a more favourable safety profile than typical antipsychotics with a hitherto unknown topographic quantitative electroencephalogram (QEEG) profile. OBJECTIVES: We investigated electrical brain activity (QEEG and cognitive event related potentials, ERPs) in healthy subjects who received olanzapine. METHODS: Vigilance-controlled, 19-channel EEG and ERP in an auditory odd-ball paradigm were recorded before and 3 h, 6 h and 9 h after administration of either a single dose of placebo or olanzapine (2.5 mg and 5 mg) in ten healthy subjects. QEEG was analysed by spectral analysis and evaluated in nine frequency bands. For the P300 component in the odd-ball ERP, the amplitude and latency was analysed. Statistical effects were tested using a repeated-measurement analysis of variance. RESULTS: For the interaction between time and treatment, significant effects were observed for theta, alpha-2, beta-2 and beta-4 frequency bands. The amplitude of the activity in the theta band increased most significantly 6 h after the 5-mg administration of olanzapine. A pronounced decrease of the alpha-2 activity especially 9 h after 5 mg olanzapine administration could be observed. In most beta frequency bands, and most significantly in the beta-4 band, a dose-dependent decrease of the activity beginning 6 h after drug administration was demonstrated. Topographic effects could be observed for the beta-2 band (occipital decrease) and a tendency for the alpha-2 band (frontal increase and occipital decrease), both indicating a frontal shift of brain electrical activity. There were no significant changes in P300 amplitude or latency after drug administration. Conclusion: QEEG alterations after olanzapine administration were similar to EEG effects gained by other atypical antipsychotic drugs, such as clozapine. The increase of theta activity is comparable to the frequency distribution observed for thymoleptics or antipsychotics for which treatment-emergent somnolence is commonly observed, whereas the decrease of beta activity observed after olanzapine administration is not characteristic for these drugs. There were no clear signs for an increased cerebral excitability after a single-dose administration of 2.5 mg and 5 mg olanzapine in healthy controls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the immediate prestimulus EEG microstate (sub-second epoch of stable topography/map landscape) on the map landscape of visually evoked 47-channel event-related potential (ERP) microstates was examined using the frequent, non-target stimuli of a cognitive paradigm (12 volunteers). For the two most frequent prestimulus microstate classes (oriented left anterior-right posterior and right anterior-left posterior), ERP map series were selectively averaged. The post-stimulus ERP grand average map series was segmented into microstates; 10 were found. The centroid locations of positive and negative map areas were extracted as landscape descriptors. Significant differences (MANOVAs and t-tests) between the two prestimulus classes were found in four of the ten ERP microstates. The relative orientation of the two ERP microstate classes was the same as prestimulus in some ERP microstates, but reversed in others. — Thus, brain electric microstates at stimulus arrival influence the landscapes of the post-stimulus ERP maps and therefore, information processing; prestimulus microstate effects differed for different post-stimulus ERP microstates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nondemented Parkinson’s disease (PD) patients showed increased amplitude of event-related potential component P3. We recorded 18-channel spontaneous eyes-closed resting EEG and auditory oddball event-related potentials in 29 PD patients and 11 age-matched controls. Combining Mini-Mental State Examination score and oddball P3 counting performance, 15 patients were intellectually normal, 7 moderately, and 7 severely demented. P3 and N1 amplitude and latency, mean amplitude of 1,024 ms post-stimulus (separate after rare and after frequent stimuli), and resting EEG total power for 40 s were computed, and linearly regressed for age, sex, and L-dopa dosage. In nondemented PD patients, increased P3 amplitude was confirmed, but N1 amplitude and mean amplitude after rare and frequent stimuli were also increased as well as – most important – resting EEG total power. With increasing dementia, amplitude and power decreased, and P3 latency increased. Task demands cannot explain increased P3 amplitude, since similarly increased EEG total power was found during no-task resting. Prospective studies must determine whether P3 amplitude and EEG power in nondemented PD patients can serve as predictors of dementia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients with amnestic mild cognitive impairment are at high risk for developing Alzheimer's disease. Besides episodic memory dysfunction they show deficits in accessing contextual knowledge that further specifies a general spatial navigation task or an executive function (EF) virtual action planning. There has been only one previous work with virtual reality and the use of a virtual action planning supermarket for the diagnosis of mild cognitive impairment. The authors of that study examined the feasibility and the validity of the virtual action planning supermarket (VAP-S) for the diagnosis of patients with mild cognitive impairment (MCI) and found that the VAP-S is a viable tool to assess EF deficits. In our study we employed the in-house platform of virtual action planning museum (VAP-M) and a sample of 25 MCI and 25 controls, in order to investigate deficits in spatial navigation, prospective memory and executive function. In addition, we used the morphology of late components in event-related potential (ERP) responses, as a marker for cognitive dysfunction. The related measurements were fed to a common classification scheme facilitating the direct comparison of both approaches. Our results indicate that both the VAP-M and ERP averages were able to differentiate between healthy elders and patients with amnestic mild cognitive impairment and agree with the findings of the virtual action planning supermarket (VAP-S). The sensitivity (specificity) was 100% (98%) for the VAP-M data and 87%(90%) for the ERP responses. Considering that ERPs have proven to advance the early detection and diagnosis of "presymptomatic AD", the suggested VAP-M platform appears as an appealing alternative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We assessed the effects of hypoxic-ischemic encephalopathy (HIE) and whole-body hypothermia therapy on auditory brain stem evoked responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). We performed serial assessments of ABRs and DPOAEs in newborns with moderate or severe HIE, randomized to hypothermia ( N = 4) or usual care ( N = 5). Participants were five boys and four girls with mean gestational age (standard deviation) of 38.9 (1.8) weeks. During the first week of life, peripheral auditory function, as measured by the DPOAEs, was disrupted in all nine subjects. ABRs were delayed but central transmission was intact, suggesting a peripheral rather than a central neural insult. By 3 weeks of age, peripheral auditory function normalized. Hypothermia temporarily prolonged the ABR, more so for waves generated higher in the brain stem but the effects reversed quickly on rewarming. Neonatal audiometric testing is feasible, noninvasive, and capable of enhancing our understanding of the effects of HIE and hypothermia on auditory function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

$\rm\underline{L}$ong-$\rm\underline{t}$erm $\rm\underline{p}$otentiation (LTP) is a candidate cellular mechanism underlying mammalian learning and memory. Protocols that induce LTP typically involve afferent stimulation. The experiments described in this dissertation tested the hypothesis that LTP induction does not require presynaptic activity. The significance of this hypothesis is underscored by results suggesting that LTP expression may involve activity-dependent presynaptic changes. An induction protocol using glutamate iontophoresis was developed that reliably induces LTP in hippocampal slices without afferent stimulation (ionto-LTP). Ionto-LTP is induced when excitatory postsynaptic potentials are completely blocked with adenosine and $\rm\underline{t}$etrodo$\rm\underline{t}$o$\rm\underline{x}$in (TTX). These results suggest constraints on the involvement of presynaptic mechanisms and putative retrograde messengers in LTP induction and expression; namely, these processes must function without many forms of activity-dependent presynaptic processes.^ In testing the role of pre-and postsynaptic mechanisms in LTP expression whole-cell recordings were used to examine the frequency and amplitude of $\rm\underline{s}$pontaneous $\rm\underline{e}$xcitatory $\rm\underline{p}$o$\rm\underline{s}$ynaptic $\rm\underline{c}$urrents (sEPSCs) in CA1 pyramidal neurons. sEPSCs where comprised of an equal mixture of TTX insensitive miniature EPSCs and sEPSCs that appeared to result from spontaneous action potentials (i.e., TTX sensitive EPSCs). The detection of all sEPSCs was virtually eliminated by CNQX, suggesting that sEPSCs were glutamate mediated synaptic events. Changes in the amplitude and frequency sEPSCs were examined during the expression of ionto-LTP to obtain new information about the cellular location of mechanisms involved in synaptic plasticity. The findings of this dissertation show that ionto-LTP expression results from increased sEPSC amplitude in the absence of lasting increases in sEPSC frequency. Potentiation of sEPSC amplitude without changes in sEPSC frequency has been previously interpreted to be due to postsynaptic mechanisms. Although this interpretation is supported by findings from peripheral synapses, its application to the central nervous system is unclear. Therefore, alternative mechanisms are also considered in this dissertation. Models based on increased release probability for action potential dependent transmitter release appear insufficient to explain our results. The most straightforward interpretation of the results in this dissertation is that LTP induced by glutamate iontophoresis on dendrites of CA1 pyramidal neurons is mediated by postsynaptic mechanisms. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was designed to elucidate sex-related differences in two basic auditory and one basic visual aspect of sensory functioning, namely sensory discrimination of pitch, loudness, and brightness. Although these three aspects of sensory functioning are of vital importance in everyday life, little is known about whether men and women differ from each other in these sensory functions. Participants were 100 male and 100 female volunteers ranging in age from 18 to 30 years. Since sensory sensitivity may be positively related to individual levels of intelligence and musical experience, measures of psychometric intelligence and musical background were also obtained. Reliably better performance for men compared to women was found for pitch and loudness, but not for brightness discrimination. Furthermore, performance on loudness discrimination was positively related to psychometric intelligence, while pitch discrimination was positively related to both psychometric intelligence and levels of musical training. Additional regression analyses revealed that each of three predictor variables (sex, psychometric intelligence, and musical training) accounted for a statistically significant portion of unique variance in pitch discrimination. With regard to loudness discrimination, regression analysis yielded a statistically significant portion of unique variance for sex as a predictor variable, whereas psychometric intelligence just failed to reach statistical significance. The potential influence of sex hormones on sex-related differences in sensory functions is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using transcranial magnetic stimulation and skin conductance responses, we sought to clarify if, and to what extent, emotional experiences of different valences and intensity activate the hand-motor system and the associated corticospinal tract. For that purpose, we applied a newly developed method to evoke strong emotional experiences by the simultaneous presentation of musical and pictorial stimuli of congruent emotional valence. We uncovered enhanced motor-evoked potentials, irrespective of valence, during the simultaneous presentation of emotional music and picture stimuli (Combined conditions) compared with the single presentation of the two modalities (Picture/Music conditions). In contrast, vegetative arousal was enhanced during both the Combined and Music conditions, compared with the Picture conditions, again irrespective of emotional valence. These findings strongly indicate that arousal is a necessary, but not sufficient, prerequisite for triggering the motor system of the brain. We offer a potential explanation for this discrepant, but intriguing, finding in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies of corticofugal modulation of auditory information processing indicate that cortical neurons mediate both a highly focused positive feedback to subcortical neurons “matched” in tuning to a particular acoustic parameter and a widespread lateral inhibition to “unmatched” subcortical neurons. This cortical function for the adjustment and improvement of subcortical information processing is called egocentric selection. Egocentric selection enhances the neural representation of frequently occurring signals in the central auditory system. For our present studies performed with the big brown bat (Eptesicus fuscus), we hypothesized that egocentric selection adjusts the frequency map of the inferior colliculus (IC) according to auditory experience based on associative learning. To test this hypothesis, we delivered acoustic stimuli paired with electric leg stimulation to the bat, because such paired stimuli allowed the animal to learn that the acoustic stimulus was behaviorally important and to make behavioral and neural adjustments based on the acquired importance of the acoustic stimulus. We found that acoustic stimulation alone evokes a change in the frequency map of the IC; that this change in the IC becomes greater when the acoustic stimulation is made behaviorally relevant by pairing it with electrical stimulation; that the collicular change is mediated by the corticofugal system; and that the IC itself can sustain the change evoked by the corticofugal system for some time. Our data support the hypothesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Averaged event-related potential (ERP) data recorded from the human scalp reveal electroencephalographic (EEG) activity that is reliably time-locked and phase-locked to experimental events. We report here the application of a method based on information theory that decomposes one or more ERPs recorded at multiple scalp sensors into a sum of components with fixed scalp distributions and sparsely activated, maximally independent time courses. Independent component analysis (ICA) decomposes ERP data into a number of components equal to the number of sensors. The derived components have distinct but not necessarily orthogonal scalp projections. Unlike dipole-fitting methods, the algorithm does not model the locations of their generators in the head. Unlike methods that remove second-order correlations, such as principal component analysis (PCA), ICA also minimizes higher-order dependencies. Applied to detected—and undetected—target ERPs from an auditory vigilance experiment, the algorithm derived ten components that decomposed each of the major response peaks into one or more ICA components with relatively simple scalp distributions. Three of these components were active only when the subject detected the targets, three other components only when the target went undetected, and one in both cases. Three additional components accounted for the steady-state brain response to a 39-Hz background click train. Major features of the decomposition proved robust across sessions and changes in sensor number and placement. This method of ERP analysis can be used to compare responses from multiple stimuli, task conditions, and subject states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During metamorphosis, ranid frogs shift from a purely aquatic to a partly terrestrial lifestyle. The central auditory system undergoes functional and neuroanatomical reorganization in parallel with the development of new sound conduction pathways adapted for the detection of airborne sounds. Neural responses to sounds can be recorded from the auditory midbrain of tadpoles shortly after hatching, with higher rates of synchronous neural activity and lower sharpness of tuning than observed in postmetamorphic animals. Shortly before the onset of metamorphic climax, there is a brief “deaf” period during which no auditory activity can be evoked from the midbrain, and a loss of connectivity is observed between medullary and midbrain auditory nuclei. During the final stages of metamorphic development, auditory function and neural connectivity are restored. The acoustic communication system of the adult frog emerges from these periods of anatomical and physiological plasticity during metamorphosis.