874 resultados para Atomic hydrogen
Resumo:
Virulence factors of Pseudomonas aeruginosa include hydrogen cyanide (HCN). This secondary metabolite is maximally produced at low oxygen tension and high cell densities during the transition from exponential to stationary growth phase. The hcnABC genes encoding HCN synthase were identified on a genomic fragment complementing an HCN-deficient mutant of P. aeruginosa PAO1. The hcnA promoter was found to be controlled by the FNR-like anaerobic regulator ANR and by the quorum-sensing regulators LasR and RhlR. Primer extension analysis revealed two transcription starts, T1 and T2, separated by 29 bp. Their function was confirmed by transcriptional lacZ fusions. The promoter sequence displayed an FNR/ANR box at -42.5 bp upstream of T2 and a lux box centered around -42.5 bp upstream of T1. Expression of the hcn genes was completely abolished when this lux box was deleted or inactivated by two point mutations in conserved nucleotides. The lux box was recognized by both LasR [activated by N-(oxododecanoyl)-homoserine lactone] and RhlR (activated by N-butanoyl-homoserine lactone), as shown by expression experiments performed in quorum-sensing-defective P. aeruginosa mutants and in the N-acyl-homoserine lactone-negative heterologous host P. fluorescens CHA0. A second, less conserved lux box lying 160 bp upstream of T1 seems to account for enhanced quorum-sensing-dependent expression. Without LasR and RhlR, ANR could not activate the hcn promoter. Together, these data indicate that expression of the hcn promoter from T1 can occur under quorum-sensing control alone. Enhanced expression from T2 appears to rely on a synergistic action between LasR, RhlR, and ANR.
Resumo:
Loss of T-tubules (TT), sarcolemmal invaginations of cardiomyocytes (CMs), was recently identified as a general heart failure (HF) hallmark. However, whether TT per se or the overall sarcolemma is altered during HF process is still unknown. In this study, we directly examined sarcolemmal surface topography and physical properties using Atomic Force Microscopy (AFM) in living CMs from healthy and failing mice hearts. We confirmed the presence of highly organized crests and hollows along myofilaments in isolated healthy CMs. Sarcolemma topography was tightly correlated with elasticity, with crests stiffer than hollows and related to the presence of few packed subsarcolemmal mitochondria (SSM) as evidenced by electron microscopy. Three days after myocardial infarction (MI), CMs already exhibit an overall sarcolemma disorganization with general loss of crests topography thus becoming smooth and correlating with a decreased elasticity while interfibrillar mitochondria (IFM), myofilaments alignment and TT network were unaltered. End-stage post-ischemic condition (15days post-MI) exacerbates overall sarcolemma disorganization with, in addition to general loss of crest/hollow periodicity, a significant increase of cell surface stiffness. Strikingly, electron microscopy revealed the total depletion of SSM while some IFM heaps could be visualized beneath the membrane. Accordingly, mitochondrial Ca(2+) studies showed a heterogeneous pattern between SSM and IFM in healthy CMs which disappeared in HF. In vitro, formamide-induced sarcolemmal stress on healthy CMs phenocopied post-ischemic kinetics abnormalities and revealed initial SSM death and crest/hollow disorganization followed by IFM later disarray which moved toward the cell surface and structured heaps correlating with TT loss. This study demonstrates that the loss of crest/hollow organization of CM surface in HF occurs early and precedes disruption of the TT network. It also highlights a general stiffness increased of the CM surface most likely related to atypical IFM heaps while SSM died during HF process. Overall, these results indicate that initial sarcolemmal stress leading to SSM death could underlie subsequent TT disarray and HF setting.
Resumo:
En aquest projecte s'ha estudiat la posada a punt d’un equip comercial ALD per a l’obtenció de capes primes d'alúmina a escala nanomètrica utilitzant vapor d’aigua i TMA com a precursors. Per tal de comprovar a bondat de les receptes experimentals aportades pel fabricant així com comprovar alguns aspectes de la teoria ALD s’han realitzat una sèrie de mostres variant els diferents paràmetres experimentals, principalment la temperatura de deposició, el nombre de cicles, la durada del cicle i el tipus de substrat. Per a la determinació dels gruixos nanomètrics de les capes i per tant dels ritmes de creixement s’ha utilitzat la el·lipsometria, una de les poques tècniques no destructives capaç de mesurar amb gran precisió gruixos de capes o interfases de pocs àngstroms o nanòmetres. En una primera etapa s'han utilitzat els valors experimentals donats pel fabricant del sistema ALD per determinar el ritme de creixement en funció de la temperatura de dipòsit i del numero de cicles, en ambdós casos sobre diversos substrats. S'ha demostrat que el ritme de creixement augmenta lleugerament en augmentar la temperatura de dipòsit, tot i que amb una variació petita, de l'ordre del 12% en variar 70ºC la temperatura de deposició. Així mateix s'ha demostrat la linealitat del gruix amb el número de cicles, tot i que no s’observa una proporcionalitat exacta. En una segona etapa s'han optimitzat els paràmetres experimentals, bàsicament els temps de purga entre pols i pols per tal de reduir considerablement les durades dels experiments realitzats a relativament baixes temperatures. En aquest cas s’ha comprovat que es mantenien els ritmes de creixement amb una diferencia del 3,6%, 4,8% i 5,5% en optimitzar el cicles en 6,65h, 8,31h, o 8,33h, respectivament. A més, per una d'aquestes condicions s’ha demostrat que es mantenia l’alta conformitat de les capes d’alúmina. A més, s'ha realitzat un estudi de l'homogeneïtat del gruix de les capes en tota la zona de dipòsit del reactor ALD. S’ha demostrat que la variació en gruix de les capes dipositades a 120ºC és com a màxim del 6,2% en una superfície de 110 cm2. Confirmant l’excepcional control de gruixos de la tècnica ALD.
Resumo:
The secondary metabolite hydrogen cyanide (HCN) is produced by Pseudomonas fluorescens from glycine, essentially under microaerophilic conditions. The genetic basis of HCN synthesis in P. fluorescens CHA0 was investigated. The contiguous structural genes hcnABC encoding HCN synthase were expressed from the T7 promoter in Escherichia coli, resulting in HCN production in this bacterium. Analysis of the nucleotide sequence of the hcnABC genes showed that each HCN synthase subunit was similar to known enzymes involved in hydrogen transfer, i.e., to formate dehydrogenase (for HcnA) or amino acid oxidases (for HcnB and HcnC). These similarities and the presence of flavin adenine dinucleotide- or NAD(P)-binding motifs in HcnB and HcnC suggest that HCN synthase may act as a dehydrogenase in the reaction leading from glycine to HCN and CO2. The hcnA promoter was mapped by primer extension; the -40 sequence (TTGGC ... ATCAA) resembled the consensus FNR (fumarate and nitrate reductase regulator) binding sequence (TTGAT ... ATCAA). The gene encoding the FNR-like protein ANR (anaerobic regulator) was cloned from P. fluorescens CHA0 and sequenced. ANR of strain CHA0 was most similar to ANR of P. aeruginosa and CydR of Azotobacter vinelandii. An anr mutant of P. fluorescens (CHA21) produced little HCN and was unable to express an hcnA-lacZ translational fusion, whereas in wild-type strain CHA0, microaerophilic conditions strongly favored the expression of the hcnA-lacZ fusion. Mutant CHA21 as well as an hcn deletion mutant were impaired in their capacity to suppress black root rot of tobacco, a disease caused by Thielaviopsis basicola, under gnotobiotic conditions. This effect was most pronounced in water-saturated artificial soil, where the anr mutant had lost about 30% of disease suppression ability, compared with wild-type strain CHA0. These results show that the anaerobic regulator ANR is required for cyanide synthesis in the strictly aerobic strain CHA0 and suggest that ANR-mediated cyanogenesis contributes to the suppression of black root rot.
Resumo:
Type II topoisomerases (Topo II) are unique enzymes that change the DNA topology by catalyzing the passage of two double-strands across each other by using the energy from ATP hydrolysis. In vitro, human Topo II relaxes positive supercoiled DNA around 10-fold faster than negative supercoiled DNA. By using atomic force microscopy (AFM) we found that human Topo II binds preferentially to DNA cross-overs. Around 50% of the DNA crossings, where Topo II was bound to, presented an angle in the range of 80-90°, suggesting a favored binding geometry in the chiral discrimination by Topo II. Our studies with AFM also helped us visualize the dynamics of the unknotting action of Topo II in knotted molecules.
Resumo:
Recently, atomic force microscope (AFM) manufacturers have begun producing instruments specifically designed to image biological specimens. In most instances, they are integrated with an inverted optical microscope, which permits concurrent optical and AFM imaging. An important component of the set-up is the imaging chamber, whose design determines the nature of the experiments that can be conducted. Many different imaging chamber designs are available, usually designed to optimize a single parameter, such as the dimensions of the substrate or the volume of fluid that can be used throughout the experiment. In this report, we present a universal fluid cell, which simultaneously optimizes all of the parameters that are important for the imaging of biological specimens in the AFM. This novel imaging chamber has been successfully tested using mammalian, plant, and microbial cells.
Resumo:
This paper shows the impact of the atomic capabilities concept to include control-oriented knowledge of linear control systems in the decisions making structure of physical agents. These agents operate in a real environment managing physical objects (e.g. their physical bodies) in coordinated tasks. This approach is presented using an introspective reasoning approach and control theory based on the specific tasks of passing a ball and executing the offside manoeuvre between physical agents in the robotic soccer testbed. Experimental results and conclusions are presented, emphasising the advantages of our approach that improve the multi-agent performance in cooperative systems
Resumo:
Originally invented for topographic imaging, atomic force microscopy (AFM) has evolved into a multifunctional biological toolkit, enabling to measure structural and functional details of cells and molecules. Its versatility and the large scope of information it can yield make it an invaluable tool in any biologically oriented laboratory, where researchers need to perform characterizations of living samples as well as single molecules in quasi-physiological conditions and with nanoscale resolution. In the last 20 years, AFM has revolutionized the characterization of microbial cells by allowing a better understanding of their cell wall and of the mechanism of action of drugs and by becoming itself a powerful diagnostic tool to study bacteria. Indeed, AFM is much more than a high-resolution microscopy technique. It can reconstruct force maps that can be used to explore the nanomechanical properties of microorganisms and probe at the same time the morphological and mechanical modifications induced by external stimuli. Furthermore it can be used to map chemical species or specific receptors with nanometric resolution directly on the membranes of living organisms. In summary, AFM offers new capabilities and a more in-depth insight in the structure and mechanics of biological specimens with an unrivaled spatial and force resolution. Its application to the study of bacteria is extremely significant since it has already delivered important information on the metabolism of these small microorganisms and, through new and exciting technical developments, will shed more light on the real-time interaction of antimicrobial agents and bacteria.
Resumo:
Natural variation in DNA sequence contributes to individual differences in quantitative traits. While multiple studies have shown genetic control over gene expression variation, few additional cellular traits have been investigated. Here, we investigated the natural variation of NADPH oxidase-dependent hydrogen peroxide (H(2)O(2) release), which is the joint effect of reactive oxygen species (ROS) production, superoxide metabolism and degradation, and is related to a number of human disorders. We assessed the normal variation of H(2)O(2) release in lymphoblastoid cell lines (LCL) in a family-based 3-generation cohort (CEPH-HapMap), and in 3 population-based cohorts (KORA, GenCord, HapMap). Substantial individual variation was observed, 45% of which were associated with heritability in the CEPH-HapMap cohort. We identified 2 genome-wide significant loci of Hsa12 and Hsa15 in genome-wide linkage analysis. Next, we performed genome-wide association study (GWAS) for the combined KORA-GenCord cohorts (n = 279) using enhanced marker resolution by imputation (>1.4 million SNPs). We found 5 significant associations (p<5.00×10-8) and 54 suggestive associations (p<1.00×10-5), one of which confirmed the linked region on Hsa15. To replicate our findings, we performed GWAS using 58 HapMap individuals and ∼2.1 million SNPs. We identified 40 genome-wide significant and 302 suggestive SNPs, and confirmed genome signals on Hsa1, Hsa12, and Hsa15. Genetic loci within 900 kb from the known candidate gene p67phox on Hsa1 were identified in GWAS in both cohorts. We did not find replication of SNPs across all cohorts, but replication within the same genomic region. Finally, a highly significant decrease in H(2)O(2) release was observed in Down Syndrome (DS) individuals (p<2.88×10-12). Taken together, our results show strong evidence of genetic control of H(2)O(2) in LCL of healthy and DS cohorts and suggest that cellular phenotypes, which themselves are also complex, may be used as proxies for dissection of complex disorders.
Resumo:
The vasoconstrictor effect of hydrogen peroxide (H(2)O(2)) on isolated perfused rat kidney was investigated. H(2)O(2) induced vasoconstriction in the isolated rat kidney in a concentration-dependent manner. The vasoconstrictor effects of H(2)O(2) were completely inhibited by 1200 U/ml catalase. Endothelium-removal potentiated the renal response to H(2)O(2). The H(2)O(2) dose-response curve was not significantly modified by administration of the NO inhibitor L-NAME (10(-4) mol/l), whereas it was increased by the non-specific inhibitor of K+-channels, tetraethylammonium (3.10(-3) mol/l). Separately, removal of extracellular Ca(2+), administration of a mixture of calcium desensitizing agents (nitroprusside, papaverine, and diazoxide), and administration of a protein kinase C (PKC) inhibitor (chelerythrine, 10(-5) mol/l) each significantly attenuated the vasoconstrictor response to H(2)O(2), which was virtually suppressed when they were performed together. The pressor response to H(2)O(2) was not affected by: dimethyl sulfoxide (7.10(-5) mol/l) plus mannitol (3.10(-5) mol/l); intracellular Ca(2+) chelation using BAPTA (10(-5) mol/l); calcium store depletion after repeated doses of phenylephrine (10(-5) g/g kidney); or the presence of indomethacin (10(-5) mol/l), ODYA (2.10(-6) mol/l) or genistein (10(-5) mol/l). We conclude that the vasoconstrictor response to H(2)O(2) in the rat renal vasculature comprises the following components: 1) extracellular calcium influx, 2) activation of PKC, and 3) stimulation of pathways leading to sensitization of contractile elements to calcium. Moreover, a reduced pressor responsiveness to H(2)O(2) in female kidneys was observed.
Resumo:
Omega-3 polyunsaturated fatty acids (n-3 PUFA) can modulate the immune system and their primary effect is on macrophage function. Paracoccidioidomycosis (PCM) is an endemic systemic mycosis in Latin America that is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb). Macrophages are the main defence against this pathogen and have microbicidal activity that is dependent on interferon-Γ and tumour necrosis factor (TNF)-α. These cytokines stimulate the synthesis of nitric oxide (NO) and hydrogen peroxide (H2O2), leading to the death of the fungus. To study the effect of n-3 PUFA on the host immune response during experimental PCM, macrophages that were obtained from animals infected with Pb18 and fed a diet enriched by linseed (LIN) oil were cultured and challenged with the fungus in vitro. The macrophage function was analysed based on the concentrations of TNF-α, NO and H2O2. LIN oil seems to influence the production of TNF-α during the development of disease. A diet enriched with LIN oil influences the microbicidal activity of the macrophages by inducing the production of cytokines and metabolites such as NO and H2O2, predominantly in the chronic phase of infection.
Resumo:
Ascorbate peroxidases (APX) are class I heme-containing enzymes that convert hydrogen peroxide into water molecules. The gene encoding APX has been characterized in 11 strains of Trypanosoma cruzi that are sensitive or resistant to benznidazole (BZ). Bioinformatic analysis revealed the presence of two complete copies of the T. cruzi APX (TcAPX) gene in the genome of the parasite, while karyotype analysis showed that the gene was present in the 2.000-kb chromosome of all of the strains analyzed. The sequence of TcAPX exhibited greater levels of similarity to those of orthologous enzymes from Leishmania spp than to APXs from the higher plant Arabidopsis thaliana. Northern blot and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed no significant differences in TcAPX mRNA levels between the T. cruzi strains analyzed. On the other hand, Western blots showed that the expression levels of TcAPX protein were, respectively, two and three-fold higher in T. cruzi populations with in vitro induced (17 LER) and in vivo selected (BZR) resistance to BZ, in comparison with their corresponding susceptible counterparts. Moreover, the two BZ-resistant populations exhibited higher tolerances to exogenous hydrogen peroxide than their susceptible counterparts and showed TcAPX levels that increased in a dose-dependent manner following exposure to 100 and 200 µM hydrogen peroxide.
Resumo:
The global response regulator GacA of Pseudomonas aeruginosa PAO1 positively controls the production of the quorum sensing signal molecule N-butanoyl-homoserine-lactone (C4-HSL) and hence the synthesis of several C4-HSL-dependent virulence factors, including hydrogen cyanide (HCN). This study presents evidence that GacA positively influences the transcription of the rhlI gene, specifying C4-HSL synthase, explaining the quorum sensing-dependent transcriptional control of the HCN biosynthetic genes (hcnABC). In addition, GacA was found to modulate hcn gene expression positively at a post-transcriptional level involving the hcnA ribosome-binding site. Thus, the activating effect of GacA on cyanogenesis results from both transcriptional and post-transcriptional mechanisms.
Resumo:
Partint de les definicions usuals de Mesures de Semblança Quàntica (MSQ), es considera la dependència d'aquestes mesures respecte de la superposició molecular. Pel cas particular en qnè els sistemes comparats siguin una molècula i un Àtom i que les mesures es calculin amb l'aproximació EASA, les MSQ esdevenen funcions de les tres coordenades de l'espai. Mantenint fixa una de les tres coordenades, es pot representar fàcilment la variació del valor de semblança en un pla determinat, i obtenir els anomenats mapes de semblança. En aquest article, es comparen els mapes de semblança obtinguts amb diferents MSQ per a sistemes senzills
Resumo:
Differential scanning calorimetry (DSC) was used to study the dehydrogenation processes that take place in three hydrogenated amorphous silicon materials: nanoparticles, polymorphous silicon, and conventional device-quality amorphous silicon. Comparison of DSC thermograms with evolved gas analysis (EGA) has led to the identification of four dehydrogenation processes arising from polymeric chains (A), SiH groups at the surfaces of internal voids (A'), SiH groups at interfaces (B), and in the bulk (C). All of them are slightly exothermic with enthalpies below 50 meV/H atoms , indicating that, after dissociation of any SiH group, most dangling bonds recombine. The kinetics of the three low-temperature processes [with DSC peak temperatures at around 320 (A),360 (A'), and 430°C (B)] exhibit a kinetic-compensation effect characterized by a linea relationship between the activation entropy and enthalpy, which constitutes their signature. Their Si-H bond-dissociation energies have been determined to be E (Si-H)0=3.14 (A), 3.19 (A'), and 3.28 eV (B). In these cases it was possible to extract the formation energy E(DB) of the dangling bonds that recombine after Si-H bond breaking [0.97 (A), 1.05 (A'), and 1.12 (B)]. It is concluded that E(DB) increases with the degree of confinement and that E(DB)>1.10 eV for the isolated dangling bond in the bulk. After Si-H dissociation and for the low-temperature processes, hydrogen is transported in molecular form and a low relaxation of the silicon network is promoted. This is in contrast to the high-temperature process for which the diffusion of H in atomic form induces a substantial lattice relaxation that, for the conventional amorphous sample, releases energy of around 600 meV per H atom. It is argued that the density of sites in the Si network for H trapping diminishes during atomic diffusion