970 resultados para Atmospheric Conditions.
Resumo:
Lithium phosphorus oxynitride (LiPON), the widely used solid electrolyte for thin film microbatteries, is not compatible with the ambient humid temperatures. The reasons for reduction in ionic conductivity of LiPON thin films from 2.8 x 10(-6) Scm(-1) to 9.9 x 10(-10) Scm(-1) when exposed to air are analyzed with the aid of AC impedance measurements, SEM, XPS and stylus profilometry. Initially, particulate-free film surfaces obtained soon after rf sputter deposition in N-2 ambient conditions becomes covered with microstructures, forming pores in the film when exposed to air. LiPON films are deposited on Ti coated silicon in addition to bare silicon, ruling out the possibility of stress-related rupturing from the LiPON/Si interface. The reduction of nitrogen, phosphorus, and increased presence of lithium, oxygen and carbon over the film surface lowers the ionic conductivity of LiPON films when exposed to air. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
The potential predictability of the Indian summer monsoon due to slowly varying sea surface temperature (SST) forcing is examined. Factors responsible for limiting the predictability are also investigated. Three multiyear simulations with the R30 version of the Geophysical Fluid Dynamics Laboratory's climate model are carried out for this purpose, The mean monsoon simulated by this model is realistic including the mean summer precipitation over the Indian continent. The interannual variability of the large-scale component of the monsoon such as the "monsoon shear index" and its teleconnection with Pacific SST is well simulated by the model in a 15-yr integration with observed SST as boundary condition. On regional scales, the skill in simulating the interannual variability of precipitation over the Indian continent by the model is rather modest and its simultaneous correlation with eastern Pacific SST is negative but poor as observed. The poor predictability of precipitation over the Indian region in the model is related to the fact that contribution to the interannual variability over this region due to slow SST variations [El Nino-Southern Oscillation (ENSO) related] is comparable to those due to regional-scale fluctuations unrelated to ENSO SST. The physical mechanism through which ENSO SST tend to produce reduction in precipitation over the Indian continent is also elucidated. A measure of internal variability of the model summer monsoon is obtained from a 20-yr integration of the same model with fixed annual cycle SST as boundary conditions but with predicted soil moisture and snow cover. A comparison of summer monsoon indexes between this run and the observed SST run shows that the internal oscillations can account for a large fraction of the simulated monsoon variability. The regional-scale oscillations in the observed SST run seems to arise from these internal oscillations. It is discovered that most of the interannual internal variability is due to an internal quasi-biennial oscillation (QBO) of the model atmosphere. Such a QBO is also found in the author's third 18-yr simulation in which fixed annual cycle of SST as well as soil moisture and snow cover are prescribed. This shows that the model QBO is not due to land-surface-atmosphere interaction. It is proposed that the model QBO arises due to an interaction between nonlinear intraseasonal oscillations and the annual cycle. Spatial structure of the QBO and its role in limiting the predictability of the Indian summer monsoon is discussed.
Resumo:
From 1974 through 1983, we conducted monitoring to provide the first long-term, year-round record of sea water temperatures south of New England from surface to bottom, and from nearshore to the continental slope. Expendable bathythermograph transects were made approximately monthly during the ten years by scientists and technicians from numerous institutions, working on research vessels that traversed the continental shelf off southern New England. Ten-year (1974-83) means and variability are presented for coastal and bottom water temperatures, for mid-shelf water column temperatures, and for some atmospheric and oceanographic conditions that may influence shelf and upper-slope water temperatures. Possible applications of ocean temperature monitoring to fishery ecology are noted. Some large departures from mean conditions are discussed; particularly notable during the decade were the response of water temperatures to the passage of Gulf Stream warm-core rings, and the magnitude and persistence of shelf-water cooling associated with air temperatures in three successive very cold winters (1976-77, 1977-78, and 1978-79). (PDF file contains 51 pages.)
Resumo:
This thesis is the culmination of field and laboratory studies aimed at assessing processes that affect the composition and distribution of atmospheric organic aerosol. An emphasis is placed on measurements conducted using compact and high-resolution Aerodyne Aerosol Mass Spectrometers (AMS). The first three chapters summarize results from aircraft campaigns designed to evaluate anthropogenic and biogenic impacts on marine aerosol and clouds off the coast of California. Subsequent chapters describe laboratory studies intended to evaluate gas and particle-phase mechanisms of organic aerosol oxidation.
The 2013 Nucleation in California Experiment (NiCE) was a campaign designed to study environments impacted by nucleated and/or freshly formed aerosol particles. Terrestrial biogenic aerosol with > 85% organic mass was observed to reside in the free troposphere above marine stratocumulus. This biogenic organic aerosol (BOA) originated from the Northwestern United States and was transported to the marine atmosphere during periodic cloud-clearing events. Spectra recorded by a cloud condensation nuclei counter demonstrated that BOA is CCN active. BOA enhancements at latitudes north of San Francisco, CA coincided with enhanced cloud water concentrations of organic species such as acetate and formate.
Airborne measurements conducted during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) were aimed at evaluating the contribution of ship emissions to the properties of marine aerosol and clouds off the coast of central California. In one study, analysis of organic aerosol mass spectra during periods of enhanced shipping activity yielded unique tracers indicative of cloud-processed ship emissions (m/z 42 and 99). The variation of their organic fraction (f42 and f99) was found to coincide with periods of heavy (f42 > 0.15; f99 > 0.04), moderate (0.05 < f42 < 0.15; 0.01 < f99 < 0.04), and negligible (f42 < 0.05; f99 < 0.01) ship influence. Application of these conditions to all measurements conducted during E-PEACE demonstrated that a large fraction of cloud droplet (72%) and dry aerosol mass (12%) sampled in the California coastal study region was heavily or moderately influenced by ship emissions. Another study investigated the chemical and physical evolution of a controlled organic plume emitted from the R/V Point Sur. Under sunny conditions, nucleated particles composed of oxidized organic compounds contributed nearly an order of magnitude more cloud condensation nuclei (CCN) than less oxidized particles formed under cloudy conditions. The processing time necessary for particles to become CCN active was short ( < 1 hr) compared to the time needed for particles to become hygroscopic at sub-saturated humidity ( > 4 hr).
Laboratory chamber experiments were also conducted to evaluate particle-phase processes influencing aerosol phase and composition. In one study, ammonium sulfate seed was coated with a layer of secondary organic aerosol (SOA) from toluene oxidation followed by a layer of SOA from α-pinene oxidation. The system exhibited different evaporative properties than ammonium sulfate seed initially coated with α-pinene SOA followed by a layer of toluene SOA. This behavior is consistent with a shell-and-core model and suggests limited mixing among different SOA types. Another study investigated the reactive uptake of isoprene epoxy diols (IEPOX) onto non-acidified aerosol. It was demonstrated that particle acidity has limited influence on organic aerosol formation onto ammonium sulfate seed, and that the chemical system is limited by the availability of nucleophiles such as sulfate.
Flow tube experiments were conducted to examine the role of iron in the reactive uptake and chemical oxidation of glycolaldehyde. Aerosol particles doped with iron and hydrogen peroxide were mixed with gas-phase glycolaldehyde and photochemically aged in a custom-built flow reactor. Compared to particles free of iron, iron-doped aerosols significantly enhanced the oxygen to carbon (O/C) ratio of accumulated organic mass. The primary oxidation mechanism is suggested to be a combination of Fenton and photo-Fenton reactions which enhance particle-phase OH radical concentrations.
Resumo:
This paper contains a brief report on the status of the California water supply situation on March 1, 1989, including a review of the antecedent conditions of the past two dry water years.
Resumo:
We describe a preliminary investigation into large-scale atmospheric and surface moisture variations over North America. We compare large-scale hydrologic budgets in the Los Alamos general circulation model (GCM) to observed precipitation and vertically integrated atmospheric moisture fluxes derived from the National Meteorological Center's operational analyses. THe GCM faithfully simulates the integrated flux divergence and P-E differences. However, the integrated moisture content is too low, and precipitation and evaporation are too high. The model produces summertime soil moisture dryness, which supports previous studies showing increased droughts under warmer conditions.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We examined atmospheric circulation conditions conducive to occurrence of winter floods that exceed the 10-year peak discharge on rivers in six hydroclimatic subregions in Arizona, southern Utah, Nevada, and California. ... This relationship between flooding and broad-scale atmospheric patterns in the modern record will aid in paleoclimatic interpretations of paleoflood records over the last few thousand years.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The most important control on the annual cycle of temperature is insolation, with secondary influences from terms related to moisture, yet direct statistical analysis of the moisture-driven modulations (such as El Niño) of the response of temperature to insolation are not available. We have examined one aspect of the relationship between insolation and the instrumental record of maximum daily temperature - the lag between the two - at 252 stations in the western United States.
Resumo:
From 1987 through 1992, California endured 6 consecutive years of drought for the second time this century. The drought was broken in most parts of the state by a wet year in 1993, in which runoff was 125 percent of average. But 1994 was again critically dry, with runoff only 40 percent of average statewide, raising fears that the drought had resumed. The "drought watch" of 1994 was finally washed out to sea by two large floods (January and March), which made 1995 one of the wettest years this century and refilled all but a couple of California's major reservoirs. This paper provides information on water conditions and flooding in 1995 and some comparisons with previous years.
Resumo:
These simulations are focused on the sensitivity of the barotropic ocean non-linear model to the various open boundary conditions (OBCs). Different OBCs from gradient to radiation condition are examined to determine the best result and help to choose the most appropriate OBCs. Since the interior points are changing with time both implicit and explicit forms are applied. The simulations showed that the interior flow is sensitive to changes in the OBCs and the results are highly dependent on the bathymetry of the area. When a constant depth (100m) is used, the circulation pattern with all OBCs is same. The best boundary conditions are Orlanski Radiation and its modified form. These boundary conditions produce identical adjustment in velocity and are determined to be satisfactory for both constant depth and actual bathymetry.
Resumo:
A pin-on-disc apparatus has been used to obtain continuous simultaneous measurements of the wear and friction (sliding force) behaviour of metals on bonded silicon carbide abrasive paper under conditions of controlled humidity. Iron, mild steel, and copper exhibit qualitatively similar wear behaviour; the wear rate decreases progressively with the number of passes over the same track. In contrast, the wear rate of titanium remains constant. Variation in atmospheric humidity has little effect on the wear rates of copper or titanium, although a slight effect was found in mild steel and iron. Refs.
Resumo:
A pin-on-disc apparatus has been used to investigate the wear and friction (sliding force) behavior of metals on bonded silicon carbide and alumina papers under conditions of controlled atmospheric composition. The wear rates of both commercial purity titanium and the alloy Ti-6%Al-4%V tested in air were found to remain constant with time, in contrast with the behavior of other metals tested under similar conditions, which exhibited a progressive decrease in wear rate with increasing number of passes along the same track. It is proposed that the concentration of interstitial nitrogen and oxygen in the worn metal surface, which largely determines its mechanical properties, strongly influences both the ductility of the abraded material and the force of adhesion between the metal and the abrasive particles. Parallels are drawn between abrasive wear and machining to illustrate the importance of oxygen at the interface between workpiece and tool surfaces.
Resumo:
The overall quality of five SIS products was found in good condition up to 2 months storage on the basis of organoleptic, biochemical and bacteriological characteristics and all the products was excellent in sealed packed condition up to 45 days of storage. However, quality of the products stored in open air atmospheric temperature was found excellent for first 15 days. In an average the initial moisture content was in the range of 13.5 to 15.0% with highest moisture content in puti and lowest in chapila. At the end of the 60 days the moisture content reached to the range of 18.5 to 19.0% which was more or less near the recommended limit of 16% for dried fishery products. The moisture content beyond the recommended limit as the storage period increased further and at the end of 90 days the moisture content increased to the range of 22.9 to 24% when organoleptically the product quality became very poor. The changes in the value of total volatile base nitrogen (TVB-N), peroxide value (PO), moisture and aerobic plate count (APC) of solar tunnel dried products in sealed polythene packages were investigated during 60 days of storage. There was little or no differences in TVB-N, PO and bacterial load of each species packed under various polythene density. The initial TVB-N values were in the range of 10.30 to 12.40 mg/100g of the samples. TVB-N value increased slowly up to the end of the storage period and was to in the range of 46.20 to 57.00 mg/1 00 g of sample. Initially the peroxide values (P.O.) were in the range of 6.54 to 8.40 m.eq./kg oil of the samples. During 60 days of storage, P.O. values increased slowly and at the end of the storage period these values reached to the range of 22.00 to 25.30meq./kg of sample. The initial APC was in the range 5.3xl04-7.3x104 CFU/g. The bacterial load increased slowly and at the end of the 60 days storage period reached to the range 6.6x106 - 8.6x107 CFT/g.
Resumo:
The economic seaweed Hizikia fusiforme (Harv.) Okamura (Sargassaceae, Phaeophyta) usually experiences periodical exposures to air at low tide. Photosynthetic carbon acquisition mechanisms were comparatively studied under submersed and emersed conditions in order to establish a general understanding of its photosynthetic characteristics associated with tidal cycles. When submersed in seawater, H fusiforme was capable of acquiring HCO3- as a source of inorganic carbon (Ci) to drive photosynthesis, while emersed and exposed to air, it used atmospheric CO2 for photosynthesis. The pH changes surrounding the H fusiforme fronds had less influence on the photosynthetic rates under emersed condition than under submersed condition. When the pH was as high as 10.0, emersed H fusiforme could photosynthesize efficiently, but the submersed alga exhibited very poor photosynthesis. Extracellular carbonic anhydrase (CA) played an important role in the photosynthetic acquisitions of exogenous Ci in water as well as in air. Both the concentrations of dissolved inorganic carbon in general seawater and CO2 in air were demonstrated to limit the photosynthesis of H fusiforme, which was sensitive to O-2. It appeared that the exogenous carbon acquisition system, being dependent of external CA activity, operates in a way not enough to raise intracellular CO2 level to prevent photorespiration. The inability of H fusiforme to achieve its maximum photosynthetic rate at the current ambient Ci levels under both submersed and emersed conditions suggested that the yield of aquaculture for this economic species would respond profitably to future increases in CO2 concentration in the sea and air.
Resumo:
Chlorella pyrenoidosa was cultured with 350 and 700 p.p.m.v. CO2 at varied levels of light to see the impacts of doubled atmospheric CO2 concentration on its growth and photosynthesis. The CO2 enrichment did not affect the growth rate (mu), but significantly increased the cell density when light was sufficiently supplied. The CO2 enrichment significantly depressed light-saturated photosynthesis and dark respiration in the cells grown under a high-light regime, but not those under a low-light regime. The light-saturating point for photosynthesis and photosynthetic efficiency was not affected by the CO2 enrichment under either the high-light or low-light conditions.