998 resultados para Atmospheric Circulation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied two deep-sea cores from the Scotia Sea to reconstruct past atmospheric circulation in the southern hemisphere and to resolve a long-standing debate on the interpretation of magnetic susceptibility (MS) records in Southern Ocean (SO) sediment. High-sedimentation sites MD07-3134 (0.2 - 1.2 m/kyr) and MD07-3133 (0.3 - 2 m/kyr) cover the last 92.5 kyr and 36 kyr, respectively. Both exhibit a one-to-one coupling of the MS and Ca2+ signal to the non-sea salt (nss) Ca2+ signal of the EDML ice core, clearly identifying atmospheric circulation as means of distribution. Comparison of additional proxies also excludes major influence by volcanic sources, sea-ice, icebergs, or oceanic current transport. The close resemblance of the dust proxies over the last glacial cycle, in turn, allows for the establishment of an age model of unprecedented resolution and precision for SO deep-sea sediment because atmospheric transport involves no major leads or lags. This is of particular importance because MS is routinely measured on deep-sea cores in the SO but the sediments usually lack biogenic carbonate and therefore had only limited stratigraphic control so far. Southern South America (SSA) is the likely source of eolian material because Site MD07-3133, located closer to the continent, has slightly higher MS values than Site MD07-3134, and also the MS record of Patagonian Site SALSA shows comparable variability. Patagonia was the dust source for both the Scotia Sea and East Antarctica. Dust fluxes were several times higher during glacial times, when atmospheric circulation was either stronger or shifted in latitude, sea level was lowered, shelf surfaces were exposed, and environmental conditions in SSA were dominated by glaciers and extended outwash plains. Hence, MS records of SO deep-sea sediment are reliable tracers of atmospheric circulation, allowing for chronologically-constrained reconstructions of the circum Antarctic paleoclimate history.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Air-fall volcanic ash and pumice were recovered from 22 intervals in upper Miocene-Pleistocene nannofossil oozes cored in Hole 810C on Shatsky Rise, northwest Pacific. Shatsky Rise is near the eastern limit of ash falls produced by explosive volcanism in arc systems in northern Japan and the Kuriles, more than 1600 km away. Electron probe analyses establish that the ash beds and pumice pebbles are andesitic to rhyolitic in composition, and belong to both tholeiitic and high-alumina lineages similar to tephra from Japanese volcanoes. High-speed winds in the polar-front and subtropical jets are evidently what propelled the ash for such a distance. The pumice arrived by flotation, driven from the same directions by winds, waves, and currents. It is not ice-rafted debris from the north. One thick pumice bed probably was deposited when a large pumice mat passed over Shatsky Rise. Far more abundant ash occurs in sediments cored at DSDP Sites 578 through 580, about 500 km west of Shatsky Rise. Most of the ash and pumice at Shatsky Rise can be correlated with specific ash beds at 1, 2, or all 3 of these sites by interpolating to precisely determined magnetic reversal sequences in the cores. Most of the correlations are to thick ash layers (5.7 +/- 3.0 cm) at one or more sites. These must represent extremely large eruptions that spread ash over very wide areas. Whereas several of the thicker correlative ashes fell from elongate east-trending plumes directed from central Japan, the majority of them - dating from about 2 Ma - came from the North Honshu and Kurile arc systems to the northwest. This direction probably was in response to both long-term and seasonal fluctuations in the location and velocity of the polar-front jet, and to more vigorous winter storm fronts originating over glaciated Siberia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the Pleistocene glaciations, Arctic ice sheets on western Eurasia, Greenland and North America terminated at their continental margins. In contrast, the exposed continental shelves in the Beringian region of Siberia are thought to have been covered by a tundra landscape. Evidence of grounded ice on seafloor ridges and plateaux off the coast of the Beringian margin, at depths of up to 1,000 m, have generally been attributed to ice shelves or giant icebergs that spread oceanwards during glacial maxima. Here we identify marine glaciogenic landforms visible in seismic profiles and detailed bathymetric maps along the East Siberian continental margin. We interpret these features, which occur in present water depths of up to 1,200 m, as traces from grounding events of ice sheets and ice shelves. We conclude that the Siberian Shelf edge and parts of the Arctic Ocean were covered by ice sheets of about 1 km in thickness during several Pleistocene glaciations before the most recent glacial period, which must have had a significant influence on albedo and oceanic and atmospheric circulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the first high-resolution alkenone-derived sea surface temperature (SST) reconstruction in the southeast Pacific (Ocean Drilling Program Site 1233) covering the major part of the last glacial period and the Holocene. The record shows a clear millennial-scale pattern that is very similar to climate fluctuations observed in Antarctic ice cores, suggesting that the Southern Hemisphere high-latitude climate changes extended into the midlatitudes, involving simultaneous changes in air temperatures over Antarctica, sea ice extent, extension of the Antarctic Circumpolar Current, and westerly atmospheric circulation. A comparison to other midlatitude surface ocean records suggests that this "Antarctic" millennial-scale pattern was probably a hemisphere-wide phenomenon. In addition, we performed SST gradient reconstructions over the complete latitudinal range of the Pacific Eastern Boundary Current System for different time intervals during the last 70 kyr. The main results suggest an equatorward displaced subtropical gyre circulation during marine isotope stages 2 and 4.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Upper Pliocene through Holocene sediments recovered at Site 798 in the Japan Sea (Oki Ridge) exhibit rhythmic variation in weight percent biogenic opal at intervals of ~5 m and periods equivalent to the 41-k.y. obliquity cycle. Variance at 17 and 100 k.y. is observed prior to 1.3 Ma. These cycles are also clearly defined by log data and correspond to clusters of decimeter-scale dark-colored sediment units alternating with clusters of light-colored units. Opal content varies between 3% and 22% between 0 and 1.3 Ma and from 3% to 43% between 1.3 and 2.6 Ma. Long-term opal accumulation rates average 1.8 g/cm**2/k.y. in the late Pliocene/early Pleistocene and decrease by about 60% at ~1.3 Ma. Rough calculations suggest that opal accumulation rates increased and terrigenous flux decreased during the Holocene relative to the last glacial period. Our age control is not yet sufficient to allow a similar analysis of the 41-k.y. cyclicity in opal content throughout the Pleistocene. Stable isotope results from planktonic foraminifers confirm previous suggestions of a strong surface-water freshening event during isotope stage 2; however, this episode appears to be unique during the Pleistocene. Benthic foraminifers are depleted in 18O during parts of glacial stages 2 and 6 relative to adjacent interglacials, suggesting unusual warming and/or freshening of deep waters. Collectively, the stable isotope and %opal data are consistent with continuing isolation of the Japan Sea during the Quaternary with important transitions occurring at 1.3, 0.7 to 1.0, and 0.2 to 0.3 Ma. Complex relationships among the stable isotope results, %opal data, and sediment characteristics such as color and organic and inorganic carbon content preclude development of a simple model to explain cyclical sedimentation. Opal maxima occur within both light and dark intervals and the processes that control surface-water productivity are at times decoupled from the factors that regulate deep-water dysaerobia. We suggest that water column overturn is controlled largely by regional atmospheric circulation that must also have an as yet poorly understood effect on surface-water fertility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From November 2004 to December 2007, size-segregated aerosol samples were collected all-year-round at Dome C (East Antarctica) by using PM10 and PM2.5 samplers, and multi-stage impactors. The data set obtained from the chemical analysis provided the longest and the most time-resolved record of sea spray aerosol (sea salt Na+) in inner Antarctica. Sea spray showed a sharp seasonal pattern. The highest values measured in winter (Apr-Nov) were about ten times larger than in summer (Dec-Mar). For the first time, a size-distribution seasonal pattern was also shown: in winter, sea spray particles are mainly submicrometric, while their summer size-mode is around 1-2 µm. Meteorological analysis on a synoptic scale allowed the definition of atmospheric conditions leading sea spray to Dome C. An extreme-value approach along with specific environmental based criteria was taken to yield stronger fingerprints linking atmospheric circulation (means and anomalies) to extreme sea spray events. Air mass back-trajectory analyses for some high sea spray events allowed the identification of two major air mass pathways, reflecting different size distributions: micrometric fractions for transport from the closer Indian-Pacific sector, and sub-micrometric particles for longer trajectories over the Antarctic Plateau. The seasonal pattern of the SO4**2- /Na+ ratio enabled the identification of few events depleted in sulphate, with respect to the seawater composition. By using methanesulphonic acid (MSA) profile to evaluate the biogenic SO4**2- contribution, a more reliable sea salt sulphate was calculated. In this way, few events (mainly in April and in September) were identified originating probably from the "frost flower" source. A comparison with daily-collected superficial snow samples revealed that there is a temporal shift between aerosol and snow sea spray trends. This feature could imply a more complex deposition processes of sea spray, involving significant contribution of wet and diamond dust deposition, but further work has to be carried out to rule out the effect of wind re-distribution and to have more statistic significance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The terrigenous fraction of sediments from a deep-sea sediment core recovered from the northwestern Western Australian continental slope offshore North West Cape, SE Indian Ocean, reveals a history of Western Australian climate throughout the last 550 ka. End-member modelling of a data set of grain-size distributions (n = 438) of the terrigenous sediment fraction allows to interpret the record in terms of aeolian and fluvial sediment deposition, both related to palaeo-environmental conditions in the North West Cape area. The data set can be best described by two aeolian end members and one fluvial one. Changes in the ratio of the two aeolian end members over the fluvial one are interpreted as aridity variations in northwestern Western Australia. These grain-size data are compared with bulk geochemical data obtained by XRF scans of the core. Log-ratios of the elements Zr/Fe and Ti/Ca, which indicate a terrigenous origin, corroborate the grain-size data. We postulate that the mid- to late Quaternary near North West Cape climate was relatively arid during the glacial and relatively humid during the interglacial stages, owing to meridional shifts in the atmospheric circulation system. Opposite to published palaeo-environmental records from the same latitude (20°S) offshore Chile and offshore Namibia, the Australian aridity record does not show the typical southern hemisphere climate variability of humid glacials and dry interglacials, which we interpret to be the result of the relatively large land mass of the Australian continent, which emphasises a strong monsoonal climatic system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The provenance of eolian dust supplied to deep-sea sediments has the potential to offer insights into changes in past atmospheric circulation. Specifically, measuring temporal changes in dust provenance can shed light on changes in the mean position of the Intertropical Convergence Zone (ITCZ), a region acting as a barrier separating wind-blown material derived from northern versus southern hemisphere sources. Here we have analyzed Nd, Sr, and Pb isotope ratios in the operationally-defined detrital component extracted from deep-sea sediments in the eastern equatorial Pacific (EEP) along a meridional transect at 110°W from 3°S to 7°N (ODP Leg 138, sites 848-853). Sr isotope results show that barite Sr has a significant influence on 87Sr/86Sr isotope ratios of samples in the upwelling zone of the EEP. However, sites located >3° or more away from the equator (sites 852 and 853) are believed to not be affected by barite Sr and provide useful detrital Sr signals. 208Pb/206Pb and 207Pb/206Pb ratios in all cores fall into the Pb-isotope space of five potential dust sources (Asia, North and Central/South America, Sahara, and Australia), with no distinct isotopic fingerprinting of the dominant source(s). epsilon-Nd values were most valuable for discerning detrital source provenance, and their values at all sites, ranging from ~5.46 to ~3.25, were more unradiogenic for sediments deposited during the last glacial than for those deposited during the Holocene. There are distinct latitudinal trends in the epsilon-Nd values, with more radiogenic values further south and less radiogenic values further north, excluding site 848. This distinction holds true for both Holocene and last glacial periods. For the most southerly site, 848, we invoke, for the first time, a distinct southern hemisphere Australian source as being responsible for the unradiogenic Nd isotope ratios. Both average last glacial and Holocene epsilon-Nd values show similar sharp gradients along the transect between 5.29°N and 2.77°N, suggesting little movement of the glacial ITCZ in the EEP. However, during the deglacial, this gradient is stronger and shifted further north between 5.29°N and 7.21°N, suggesting a more northerly, possibly stronger, deglacial ITCZ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complex deglacial to Holocene oceanographic development in the Gulf of Guayaquil (Eastern Equatorial Pacific) is reconstructed for sea surface and subsurface ocean levels from (isotope) geochemical proxies based on marine sediment cores. At sea surface, southern sourced Cold Coastal Water and tropical Equatorial Surface Water/Tropical Surface Water are intimately related. In particular since ~10 ka, independent sea surface temperature proxies capturing different seasons emphasize the growing seasonal contrast in the Gulf of Guayaquil, which is in contrast to ocean areas further offshore. Cold Coastal Water became rapidly present in the Gulf of Guayaquil during the austral winter season in line with the strengthening of the Southeast Trades, while coastal upwelling off Peru gradually intensified and expanded northward in response to a seasonally changing atmospheric circulation pattern affecting the core locations intensively since 4 ka BP. Equatorial Surface Water, instead, was displaced and Tropical Surface Water moved northward together with the Equatorial Front. At subsurface, the presence of Equatorial Under Current-sourced Equatorial Subsurface Water was continuously growing, prominently since ~10-8 ka B.P. During Heinrich Stadial 1 and large parts of the Bølling/Allerød, and similarly during short Holocene time intervals at ~5.1-4 ka B.P. and ~1.5-0.5 ka B.P., the admixture of Equatorial Subsurface Water was reduced in response to both short-term weakening of Equatorial Under Current strength from the northwest and emplacement by tropical Equatorial Surface Water, considerably warming the uppermost ocean layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Variations in deposition of terrigenous fine sediments and their grain-size distributions from a high-resolution marine sediment record offshore northwest Africa (30°51.0'N; 10°16.1'W) document climate changes on the African continent during the Holocene. End-member grain-size distributions of the terrigenous silt fraction, which are related to fluvial and aeolian dust transport, indicate millennial-scale variability in the dominant transport processes at the investigation site off northwest Africa as well as recurring periods of dry conditions in northwest Africa during the Holocene. The terrigenous record from the subtropical North Atlantic reflects generally humid conditions before the Younger Dryas, during the early to mid-Holocene, as well as after 1.3 kyr BP. By contrast, continental runoff was reduced and arid conditions were prevalent at the beginning of the Younger Dryas and during the mid- and late Holocene. A comparison with high- and low-latitude Holocene climate records reveals a strong link between northwest African climate and Northern Hemisphere atmospheric circulation throughout the Holocene. Due to its proximal position, close to an ephemeral river system draining the Atlas Mountains as well as the adjacent Saharan desert, this detailed marine sediment record, which has a temporal resolution between 15 and 120 years, is ideally suited to enhance our understanding of ocean-continent-atmosphere interactions in African climates and the hydrological cycle of northern Africa after the last deglaciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Variations in the strength of coastal upwelling in the South East Atlantic Ocean and summer monsoonal rains over South Africa are controlled by the regional atmospheric circulation regime. Although information about these parameters exists for the last glacial period, little detailed information exists for older time periods. New information from ODP Site 1085 for Marine Isotope Stages (MIS) 12-10 shows that glacial-interglacial productivity trends linked to upwelling variability followed a pattern similar to the last glacial cycle, with maximums shortly before glacial maxima, and minimums shortly before glacial terminations. During the MIS-11/10 transition, several periodic oscillations in productivity and monsoonal proxies are best explained by southwards shifts in the southern sub-tropical high-pressure cells followed by abrupt northwards shifts. Comparison to coeval sea-surface temperature measurements suggests that these monsoonal cycles were tightly coupled to anti-phased hemispheric climate change, with an intensified summer monsoon during periods of Northern (Southern) Hemisphere cooling (warming). The timing of these events suggests a pacing by insolation over precession periods. A lack of similar regional circulation shifts during the MIS-13/12 transition is likely due to the large equatorwards shift in the tropical convection zone that occurred during this extreme glaciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A multiproxy analysis based on planktic foraminiferal abundances, derived SSTs, and stable planktic isotopes measurements together with alkenone abundances and Uk'37 SSTs was performed on late MIS 6 to early MIS 5d sediment recovered from Site 975 (ODP Leg 161) in the South Balearic Islands basin (Western Mediterranean) with emphasis on reconstructing the climate progression of the last interglacial period. A number of abrupt climate changes related to alternative influence of nutrient rich northern and oligotrophic southern water masses were revealed. Heinrich event 11 and cooling events C27, C26, C25, C24, C23, which have been previously described in the North Atlantic, were recognized. However, in comparison to the eastern North Atlantic mid-latitude region, events C27 and C26 at Site 975 seem to be significantly more pronounced. Together with evidence of a two-phase climate optimum with maximum SSTs reached during its later phase, this implies a close similarity in climate dynamics between the Western Mediterranean and the Nordic seas. We propose that postglacial effects in the Nordic seas had an influence on the western Mediterranean climate via atmospheric circulation and that these effects competed with the insolation force.