998 resultados para Astrophysics.
Resumo:
Energies for 524 levels of Ar XIII, 460 levels of Ar XIV and 156 levels of Ar XV have been calculated using the GRASP code of Dyall et al. (1989). Additionally, radiative rates, oscillator strengths, and line strengths are calculated for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among these levels. Comparisons are made with the limited results available in the literature, and the accuracy of the data is assessed. Our energy levels are estimated to be accurate to better than 1%, whereas results for other parameters are probably accurate to better than 20%. Additionally, the level lifetimes derived from our radiative rates are in excellent agreement with measured values.
Resumo:
Energy levels, radiative rates, collision strengths, and effective collision strengths for all transitions up to and including the n = 5 levels of AlXIII have been computed in the j j coupling scheme including relativistic effects. All partial waves with angular momentum J less than or equal to 60 have been included, and resonances have been resolved in a fine energy grid in the threshold region. Collision strengths are tabulated at energies above thresholds in the range 170.0 less than or equal to E less than or equal to 300.0 Ryd, and results for effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron velocities, are tabulated over a wide temperature range of 4.4 less than or equal to log T-e less than or equal to 6.8 K. The importance of including relativistic effects in a calculation is discussed in comparison with the earlier available non-relativistic results.
Resumo:
In this paper we investigate the validity of the optically thin assumption in the transition region of the late-type star AU Mic. We use Far-Ultraviolet Spectroscopic Explorer (FUSE) observations of the C III multiplet and O VI resonance lines, hence yielding information at two different levels within the atmosphere. Significant deviations from the optically thin fluxes are found for C III in both quiescent and flare spectra, where only 60% of the flux is actually observed. This could explain the apparent deviation of C III observed in emission measure distributions. We utilize escape probabilities for both homogeneous and inhomogeneous geometries and calculate optical depths as high as 10 for the C III 1175.71 Angstrom component of the multiplet. Using a lower limit to the electron density (10(11) cm(-3))we derive an effective thickness of
Resumo:
Alfven wave phase mixing is an extensively studied mechanism for dissipating wave energy in an inhomogeneous medium. It is common in the vast majority of phase mixing papers to assume that even though short scale lengths and steep gradients develop as a result of phase mixing, nonlinear wave coupling does not occur. However, weakly nonlinear studies have shown that phase mixing generates magnetoacoustic modes. Numerical results are presented which show the nonlinear generation of magnetosonic waves by Alfven wave phase mixing. The efficiency of the effect is determined by the wave amplitude, the frequency of the Alfven waves and the gradient in the background Alfven speed. Weakly nonlinear theory has shown that the amplitude of the fast magnetosonic wave grows linearly in time. The simulations presented in this paper extend this result to later times and show saturation of the fast magnetosonic component at amplitudes much lower than that of the Alfven wave. For the case when Alfven waves are driven at the boundary, simulating photospheric footpoint motion, a clear modulation of the saturated amplitude is observed. All the results in this paper are for a low amplitude (less than or equal to 0.1), single frequency Alfven wave and a uniform background magnetic field in a two dimensional domain. For this simplified geometry, and with a monochromatic driver, we concluded that the nonlinear generation of fast modes has little effect on classical phase mixing.
Resumo:
Energies of the 700 lowest levels in Fe XX have been obtained using the multiconfiguration Dirac-Fock method. Configuration interaction method on the basis set of transformed radial orbitals with variable parameters taking into account relativistic corrections in the Breit-Pauli approximation was used to crosscheck our presented results. Transition probabilities, oscillator and line strengths are presented for electric dipole (E1), electric quadrupole (E2) and magnetic dipole (M1) transitions among these levels. The total radiative transition probabilities from each level are also provided. Results are compared with data compiled by NIST and with other theoretical work.
Resumo:
Energy levels and the corresponding transition probabilities for allowed and forbidden transitions among the levels of the ground configuration and first 23 excited configurations of fluorine-like Fe XVIII have been calculated using the multiconfigurational Dirac-Fock GRASP code. A total of 379 lowest bound levels of Fe XVIII is presented, and the energy levels are identified in spectroscopic notations. Transition probabilities, oscillator strengths and line strengths for electric dipole (E1), electric quadrupole (E2) and magnetic dipole (M1) transitions among these 379 levels are also presented. The calculated energy levels and transition probabilities are compared with experimental data.
Resumo:
Multiconfigurational Dirac-Fock calculations are reported for 656 energy levels and the 214 840 electric dipole (E I), electric quadrupole (E2) and magnetic dipole (M1) transition probabilities in oxygen-like Fe xix. The spectroscopic notations as well as the total transition probabilities from each energy level are provided. Good agreement is found with data compiled by NIST.
Resumo:
One of the mechanisms proposed for heating the corona above solar active regions is the damping of magnetohydrodynamic (MHD) waves. Continuing on previous work, we provide observational evidence for the existence of high-frequency MHD waves in coronal loops observed during the August 1999 total solar eclipse. A wavelet analysis is used to identify twenty 4 x 4 arcsec(2) areas showing intensity oscillations. All detections lie in the frequency range 0.15 - 0.25 Hz (7 - 4 s), last for at least 3 periods at a confidence level of more than 99% and arise just outside known coronal loops. This leads us to suggest that they occur in low emission-measure or different temperature loops associated with the active region.
Resumo:
Theoretical electron-density-sensitive emission line ratios involving 2s(2)2p(2)-2s2p(3) transitions in Si IX between 223 and 350 Angstrom are presented. A comparison of these with an extensive dataset of solar-active-region, quiet-Sun, subflare and off-limb observations, obtained during rocket flights by the Solar EUV Research Telescope and Spectrograph (SERTS), reveals generally very good agreement between theory and experiment. This provides support for the accuracy of the line- ratio diagnostics, and hence the atomic data on which they are based. In particular, the density-sensitive intensity ratio I (258.10 Angstrom)/ I (349.87 Angstrom) offers an especially promising diagnostic for studies of coronal plasmas, as it involves two reasonably strong emission lines and varies by more than an order of magnitude over the useful density range of 10(9)-10(11) cm(-3). The 2s(2)2p(2) S-1(0) - 2s2p(3) P-1(1) transition at 259.77 Angstrom is very marginally identified for the first time in the SERTS database, although it has previously been detected in solar flare observations.
Resumo:
Recent R-matrix calculations of electron impact excitation rates in N-like Si VIII are used to derive theoretical emission line intensity ratios involving 2s(2)2p(3)-2s2p(4) transitions in the 216 -320 Angstrom wavelength range. A comparison of these with an extensive dataset of solar active region, quiet- Sun, sub-flare and off-limb observations, obtained during rocket flights of the Solar EUV Research Telescope and Spectrograph (SERTS), indicates that the ratio R-1 = I(216.94 Angstrom)/I(319.84 Angstrom) may provide a usable electron density diagnostic for coronal plasmas. The ratio involves two lines of comparable intensity, and varies by a factor of about 5 over the useful density range of 10(8)-10(11) cm(-3). However R-2 = I(276.85 Angstrom)/I(319.84 Angstrom) and R-3 = I(277.05 Angstrom)/I(319.84 Angstrom) show very poor agreement between theory and observation, due to the severe blending of the 276.85 and 277.05 Angstrom lines with Si VII and Mg VII transitions, respectively, making the ratios unsuitable as density diagnostics. The 314.35 Angstrom feature of Si VIII also appears to be blended, with the other species contributing around 20% to the total line flux.
Resumo:
Theoretical electron density sensitive emission line ratios involving a total of eleven 2s(2)2p(2)-2s2p(3) transitions in S XI between 187 and 292 Angstrom are presented. A comparison of these with solar active region observations obtained during rocket flights by the Solar EUV Rocket Telescope and Spectrograph (SERTS) reveals generally good agreement between theory and experiment. However, the 186.87 Angstrom line is masked by fairly strong Fe XII emission at the same wavelength, while 239.83 Angstrom is blended with an unknown feature, and 285.58 Angstrom is blended with possibly N IV 285.56 Angstrom. In addition, the 191.23 Angstrom line appears to be more seriously blended with an Fe XIII feature than previously believed. The presence of several new S XI lines is confirmed in the SERTS spectra, at wavelengths of 188.66, 247.14 and 291.59 Angstrom, in excellent agreement with laboratory measurements. In particular, the detection of the 2s(2)2p(2) P- 3(1) -2s2p(3) P-3(0,1) transitions at 242.91 Angstrom is the first time (to our knowledge) that this feature has been identified in the solar spectrum. The potential usefulness of the S XI line ratios as electron density diagnostics for the solar transition region and corona is briefly discussed.
Resumo:
Previous Call K observations of the B-type star HD 83206 have revealed putative high-velocity interstellar clouds (HVCs) at Local Standard of Rest (LSR) velocities of -80 and -110 km s(- 1). Similar results were also found for the sightline towards HD135485. In this article, we show that these absorption lines are in fact due tr, stellar SII features. As the Call K absorption line in B-type stars is often used to assess the presence and distance of HVCs. we also present a very high quality spectrum of HD 83206 in the Ca II K region (similar to+/-4 Angstrom or +/-300 km s(-1)), so that in the future confusion between stellar lines and HVC features may be avoided.
Resumo:
We present model atmosphere analyses of high resolution Keck and VLT optical spectra for three evolved stars in globular clusters, viz. ZNG-1 in M 10, ZNG-1 in M 15 and ZNG-1 in NGC 6712. The derived atmospheric parameters and chemical compositions confirm the programme stars to be in the post- Asymptotic Giant Branch (post-AGB) evolutionary phase. Differential abundance analyses reveal CNO abundance patterns in M 10 ZNG-1, and possibly M 15 ZNG-1, which Suggest that both objects may have evolved off the AGB before the third dredge-up occurred. The abundance pattern of these stars is similar to the third class of optically, bright post-AGB objects discussed by van Winckel (1997). Furthermore, M 10 ZNG-1 exhibits a large C underabundance (with Delta[C/O] similar to -1.6 dex), typical of other hot post-AGB objects. Differential Delta[alpha/Fe] abundance ratios in both M 10 ZNG-1 and NGC 6712 ZNG-1 are found to be approximately 0.0 dex, with the Fe abundance of the former being in disagreement with the cluster metallicity of M 10. Given that the Fe absorption features in both M 10 ZNG-1 and NGC6712 ZNG-1 are well observed and reliably modelled, we believe that these differential Fe abundance estimates to be secure. However, our Fe abundance is difficult to explain in terms of previous evolutionary processes that Occur oil both the Horizontal Branch and the AGB.
Resumo:
The inclusion of collisional rates for He-like Fe and Ca ions is discussed with reference to the analysis of solar flare Fe XXV and Ca XIX line emission, particularly from the Yohkoh Bragg Crystal Spectrometer (BCS). The new data are a slight improvement on calculations presently used in the BCS analysis software in that the discrepancy in the Fe XXV y and z line intensities (observed larger than predicted) is reduced. Values of electron temperature from satellite-to-resonance line ratios are slightly reduced (by up to 1 MK) for a given observed ratio. The new atomic data will be incorporated in the Yohkoh BCS databases. The data should also be of interest for the analysis of high-resolution, non-solar spectra expected from the Constellation-X and Astro-E space missions. A comparison is made of a tokamak S XV spectrum with a synthetic spectrum using atomic data in the existing software and the agreement is found to be good, so validating these data for particularly high-n satellite wavelengths close to the S XV resonance line. An error in a data file used for analyzing BCS Fe XXVI spectra is corrected, so permitting analysis of these spectra.
Resumo:
Results of the search of the periodic changes of the 530.3 nm line intensity emitted by selected structures of the solar corona in the frequency range 1-10 Hz are presented. A set of 12 728 images of the section of the solar corona extending from near the north pole to the south-west were taken simultaneously in the 530.3 nm ("green") line and white-light with the Solar Eclipse Coronal Imaging System (SECIS) during the 143-seconds- long totality of the 1999 August 11 solar eclipse observed in Shabla, Bulgaria. The time resolution of the collected data is better than 0.05 s and the pixel size is approximately 4 arcsec. Using classical Fourier spectral analysis tools, we investigated temporal changes of the local 530.3 nm coronal line brightness in the frequency range 1-10 Hz of thousands of points within the field of view. The various photometric and instrumental effects have been extensively considered. We did not find any indisputable, statistically significant evidence of periodicities in any of the investigated points (at significance level alpha = 0.05).