843 resultados para Artificial intelligence algorithms


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Navigation is a broad topic that has been receiving considerable attention from the mobile robotic community over the years. In order to execute autonomous driving in outdoor urban environments it is necessary to identify parts of the terrain that can be traversed and parts that should be avoided. This paper describes an analyses of terrain identification based on different visual information using a MLP artificial neural network and combining responses of many classifiers. Experimental tests using a vehicle and a video camera have been conducted in real scenarios to evaluate the proposed approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For many learning tasks the duration of the data collection can be greater than the time scale for changes of the underlying data distribution. The question we ask is how to include the information that data are aging. Ad hoc methods to achieve this include the use of validity windows that prevent the learning machine from making inferences based on old data. This introduces the problem of how to define the size of validity windows. In this brief, a new adaptive Bayesian inspired algorithm is presented for learning drifting concepts. It uses the analogy of validity windows in an adaptive Bayesian way to incorporate changes in the data distribution over time. We apply a theoretical approach based on information geometry to the classification problem and measure its performance in simulations. The uncertainty about the appropriate size of the memory windows is dealt with in a Bayesian manner by integrating over the distribution of the adaptive window size. Thus, the posterior distribution of the weights may develop algebraic tails. The learning algorithm results from tracking the mean and variance of the posterior distribution of the weights. It was found that the algebraic tails of this posterior distribution give the learning algorithm the ability to cope with an evolving environment by permitting the escape from local traps.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The issue of how children learn the meaning of words is fundamental to developmental psychology. The recent attempts to develop or evolve efficient communication protocols among interacting robots or Virtual agents have brought that issue to a central place in more applied research fields, such as computational linguistics and neural networks, as well. An attractive approach to learning an object-word mapping is the so-called cross-situational learning. This learning scenario is based on the intuitive notion that a learner can determine the meaning of a word by finding something in common across all observed uses of that word. Here we show how the deterministic Neural Modeling Fields (NMF) categorization mechanism can be used by the learner as an efficient algorithm to infer the correct object-word mapping. To achieve that we first reduce the original on-line learning problem to a batch learning problem where the inputs to the NMF mechanism are all possible object-word associations that Could be inferred from the cross-situational learning scenario. Since many of those associations are incorrect, they are considered as clutter or noise and discarded automatically by a clutter detector model included in our NMF implementation. With these two key ingredients - batch learning and clutter detection - the NMF mechanism was capable to infer perfectly the correct object-word mapping. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relationship between thought and language and, in particular, the issue of whether and how language influences thought is still a matter of fierce debate. Here we consider a discrimination task scenario to study language acquisition in which an agent receives linguistic input from an external teacher, in addition to sensory stimuli from the objects that exemplify the overlapping categories that make up the environment. Sensory and linguistic input signals are fused using the Neural Modelling Fields (NMF) categorization algorithm. We find that the agent with language is capable of differentiating object features that it could not distinguish without language. In this sense, the linguistic stimuli prompt the agent to redefine and refine the discrimination capacity of its sensory channels. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the formulation of a combinatorial optimization problem with the following characteristics: (i) the search space is the power set of a finite set structured as a Boolean lattice; (ii) the cost function forms a U-shaped curve when applied to any lattice chain. This formulation applies for feature selection in the context of pattern recognition. The known approaches for this problem are branch-and-bound algorithms and heuristics that explore partially the search space. Branch-and-bound algorithms are equivalent to the full search, while heuristics are not. This paper presents a branch-and-bound algorithm that differs from the others known by exploring the lattice structure and the U-shaped chain curves of the search space. The main contribution of this paper is the architecture of this algorithm that is based on the representation and exploration of the search space by new lattice properties proven here. Several experiments, with well known public data, indicate the superiority of the proposed method to the sequential floating forward selection (SFFS), which is a popular heuristic that gives good results in very short computational time. In all experiments, the proposed method got better or equal results in similar or even smaller computational time. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When modeling real-world decision-theoretic planning problems in the Markov Decision Process (MDP) framework, it is often impossible to obtain a completely accurate estimate of transition probabilities. For example, natural uncertainty arises in the transition specification due to elicitation of MOP transition models from an expert or estimation from data, or non-stationary transition distributions arising from insufficient state knowledge. In the interest of obtaining the most robust policy under transition uncertainty, the Markov Decision Process with Imprecise Transition Probabilities (MDP-IPs) has been introduced to model such scenarios. Unfortunately, while various solution algorithms exist for MDP-IPs, they often require external calls to optimization routines and thus can be extremely time-consuming in practice. To address this deficiency, we introduce the factored MDP-IP and propose efficient dynamic programming methods to exploit its structure. Noting that the key computational bottleneck in the solution of factored MDP-IPs is the need to repeatedly solve nonlinear constrained optimization problems, we show how to target approximation techniques to drastically reduce the computational overhead of the nonlinear solver while producing bounded, approximately optimal solutions. Our results show up to two orders of magnitude speedup in comparison to traditional ""flat"" dynamic programming approaches and up to an order of magnitude speedup over the extension of factored MDP approximate value iteration techniques to MDP-IPs while producing the lowest error of any approximation algorithm evaluated. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Planning to reach a goal is an essential capability for rational agents. In general, a goal specifies a condition to be achieved at the end of the plan execution. In this article, we introduce nondeterministic planning for extended reachability goals (i.e., goals that also specify a condition to be preserved during the plan execution). We show that, when this kind of goal is considered, the temporal logic CTL turns out to be inadequate to formalize plan synthesis and plan validation algorithms. This is mainly due to the fact that the CTL`s semantics cannot discern among the various actions that produce state transitions. To overcome this limitation, we propose a new temporal logic called alpha-CTL. Then, based on this new logic, we implement a planner capable of synthesizing reliable plans for extended reachability goals, as a side effect of model checking.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Parkinson's disease (PD) is a degenerative illness whose cardinal symptoms include rigidity, tremor, and slowness of movement. In addition to its widely recognized effects PD can have a profound effect on speech and voice.The speech symptoms most commonly demonstrated by patients with PD are reduced vocal loudness, monopitch, disruptions of voice quality, and abnormally fast rate of speech. This cluster of speech symptoms is often termed Hypokinetic Dysarthria.The disease can be difficult to diagnose accurately, especially in its early stages, due to this reason, automatic techniques based on Artificial Intelligence should increase the diagnosing accuracy and to help the doctors make better decisions. The aim of the thesis work is to predict the PD based on the audio files collected from various patients.Audio files are preprocessed in order to attain the features.The preprocessed data contains 23 attributes and 195 instances. On an average there are six voice recordings per person, By using data compression technique such as Discrete Cosine Transform (DCT) number of instances can be minimized, after data compression, attribute selection is done using several WEKA build in methods such as ChiSquared, GainRatio, Infogain after identifying the important attributes, we evaluate attributes one by one by using stepwise regression.Based on the selected attributes we process in WEKA by using cost sensitive classifier with various algorithms like MultiPass LVQ, Logistic Model Tree(LMT), K-Star.The classified results shows on an average 80%.By using this features 95% approximate classification of PD is acheived.This shows that using the audio dataset, PD could be predicted with a higher level of accuracy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spiking neural networks - networks that encode information in the timing of spikes - are arising as a new approach in the artificial neural networks paradigm, emergent from cognitive science. One of these new models is the pulsed neural network with radial basis function, a network able to store information in the axonal propagation delay of neurons. Learning algorithms have been proposed to this model looking for mapping input pulses into output pulses. Recently, a new method was proposed to encode constant data into a temporal sequence of spikes, stimulating deeper studies in order to establish abilities and frontiers of this new approach. However, a well known problem of this kind of network is the high number of free parameters - more that 15 - to be properly configured or tuned in order to allow network convergence. This work presents for the first time a new learning function for this network training that allow the automatic configuration of one of the key network parameters: the synaptic weight decreasing factor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Artificial Intelligence techniques are applied to improve performance of a simulated oil distillation system. The chosen system was a debutanizer column. At this process, the feed, which comes to the column, is segmented by heating. The lightest components become steams, by forming the LPG (Liquefied Petroleum Gas). The others components, C5+, continue liquid. In the composition of the LPG, ideally, we have only propane and butanes, but, in practice, there are contaminants, for example, pentanes. The objective of this work is to control pentane amount in LPG, by means of intelligent set points (SP s) determination for PID controllers that are present in original instrumentation (regulatory control) of the column. A fuzzy system will be responsible for adjusting the SP's, driven by the comparison between the molar fraction of the pentane present in the output of the plant (LPG) and the desired amount. However, the molar fraction of pentane is difficult to measure on-line, due to constraints such as: long intervals of measurement, high reliability and low cost. Therefore, an inference system was used, based on a multilayer neural network, to infer the pentane molar fraction through secondary variables of the column. Finally, the results shown that the proposed control system were able to control the value of pentane molar fraction under different operational situations

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conventional methods to solve the problem of blind source separation nonlinear, in general, using series of restrictions to obtain the solution, often leading to an imperfect separation of the original sources and high computational cost. In this paper, we propose an alternative measure of independence based on information theory and uses the tools of artificial intelligence to solve problems of blind source separation linear and nonlinear later. In the linear model applies genetic algorithms and Rényi of negentropy as a measure of independence to find a separation matrix from linear mixtures of signals using linear form of waves, audio and images. A comparison with two types of algorithms for Independent Component Analysis widespread in the literature. Subsequently, we use the same measure of independence, as the cost function in the genetic algorithm to recover source signals were mixed by nonlinear functions from an artificial neural network of radial base type. Genetic algorithms are powerful tools for global search, and therefore well suited for use in problems of blind source separation. Tests and analysis are through computer simulations

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although their use can result in difficulties such as a high computational burden in the training phase and problems with parameter optimization. A recently-developed pattern recognition technique called optimum-path forest (OPF), however, has been shown to be superior to state-of-the-art artificial intelligence techniques. In this paper, we proposed to use OPF for nontechnical losses detection, as well as to apply its learning and pruning algorithms to this purpose. Comparisons against neural networks and other techniques demonstrated the robustness of the OPF with respect to commercial losses automatic identification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. This paper presents a novel approach to solve robust parameter estimation problem for nonlinear model with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.