567 resultados para Antisense Oligodeoxynucleotide
Resumo:
PURPOSE: To study VP22 light controlled delivery of antisense oligonucleotide (ODN) to ocular cells in vitro and in vivo. METHODS: The C-terminal half of VP22 was expressed in Escherichia coli, purified and mixed with 20 mer phosphorothioate oligonucleotides (ODNs) to form light sensitive complex particles (vectosomes). Uptake of vectosomes and light induced redistribution of ODNs in human choroid melanoma cells (OCM-1) and in human retinal pigment epithelial cells (ARPE-19) were studied by confocal and electron microscopy. The effect of vectosomes formed with an antisense ODN corresponding to the 3'-untranslated region of the human c-raf kinase gene on the viability and the proliferation of OCM-1 cells was assessed before and after illumination. Cells incubated with vectosomes formed with a mismatched ODN, a free antisense ODN or a free mismatched ODN served as controls. White light transscleral illumination was carried out 24 h after the intravitreal injection of vectosomes in rat eyes. The distribution of fluorescent vectosomes and free fluorescent ODN was evaluated on cryosections by fluorescence microscopy before, and 1 h after illumination. RESULTS: Overnight incubation of human OCM-1 and ARPE-19 cells with vectosomes lead to intracellular internalization of the vectosomes. When not illuminated, internalized vectosomes remained stable within the cell cytoplasm. Disruption of vectosomes and release of the complexed ODN was induced by illumination of the cultures with a cold white light or a laser beam. In vitro, up to 60% inhibition of OCM-1 cell proliferation was observed in illuminated cultures incubated with vectosomes formed with antisense c-raf ODN. No inhibitory effect on the OCM-1 cell proliferation was observed in the absence of illumination or when the cells are incubated with a free antisense c-raf ODN and illuminated. In vivo, 24 h after intravitreal injection, vectosomes were observed within the various retinal layers accumulating in the cytoplasm of RPE cells. Transscleral illumination of the injected eyes with a cold white light induced disruption of the vectosomes and a preferential localization of the "released" ODNs within the cell nuclei of the ganglion cell layer, the inner nuclear layer and the RPE cells. CONCLUSIONS: In vitro, VP22 light controlled delivery of ODNs to ocular cells nuclei was feasible using white light or laser illumination. In vivo, a single intravitreal injection of vectosomes, followed by transscleral illumination allowed for the delivery of free ODNs to retinal and RPE cells.
Resumo:
Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ~13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion mutant, showing functional conservation of this developmental regulator.
Resumo:
Tartraatti-resistentin happaman fosfataasin hiljentäminen RNAi menetelmällä: odottamaton vaikutus monosyytti-makrofagi linjan soluissa RNA interferenssi (RNAi) eli RNA:n hiljentyminen löydettiin ensimmäisenä kasveissa, ja 2000-luvulla RNAi menetelmä on otettu käyttöön myös nisäkässoluissa. RNAi on mekanismi, jossa lyhyet kaksi juosteiset RNA molekyylit eli siRNA:t sitoutuvat proteiinikompleksiin ja sitoutuvat komplementaarisesti proteiinia koodaavaan lähetti RNA:han katalysoiden lähetti RNA:n hajoamisen. Tällöin RNA:n koodaamaa proteiinia ei solussa tuoteta. Tässä työssä on RNA interferenssi menetelmän avuksi kehitetty uusi siRNA molekyylien suunnittelualgoritmi siRNA_profile, joka etsii lähetti RNA:sta geenin hiljentämiseen sopivia kohdealueita. Optimaalisesti suunnitellulla siRNA molekyylillä voi olla mahdollista saavuttaa pitkäaikainen geenin hiljeneminen ja spesifinen kohdeproteiinin määrän aleneminen solussa. Erilaiset kemialliset modifikaatiot, mm. 2´-Fluoro-modifikaatio, siRNA molekyylin riboosirenkaassa lisäsivät siRNA molekyylin stabiilisuutta veren plasmassa sekä siRNA molekyylin tehokkuutta. Nämä ovat tärkeitä siRNA molekyylien ominaisuuksia kun RNAi menetelmää sovelletaan lääketieteellisiin tarkoituksiin. Tartraatti-resistentti hapan fosfataasi (TRACP) on entsyymi, joka esiintyy luunsyöjäsoluissa eli osteoklasteissa, antigeenejä esittelevissä dendiriittisissä soluissa sekä eri kudosten makrofageissa, jotka ovat syöjäsoluja. TRACP entsyymin biologista tehtävää ei ole saatu selville, mutta oletetaan että TRACP entsyymin kyvyllä tuottaa reaktiivisia happiradikaaleja on tehtävä sekä luuta hajoittavissa osteoklasteissa sekä antigeenia esittelevissä dendriittisissä soluissa. Makrofageilla, jotka yliekpressoivat TRACP entsyymiä, on myös solunsisäinen reaktiivisten happiradikaalien tuotanto sekä bakteerin tappokyky lisääntynyt. TRACP-geenin hiljentämiseen tarkoitetut spesifiset DNA ja siRNA molekyylit aiheuttivat monosyytti-makrofagilinjan soluviljelymallissa TRACP entsyymin tuoton lisääntymistä odotusten vastaisesti. DNA ja RNA molekyylien vaikutusta TRACP entsyymin tuoton lisääntymiseen tutkittiin myös Tolllike reseptori 9 (TLR9) poistogeenisestä hiirestä eristetyissä monosyyttimakrofaagisoluissa. TRACP entsyymin tuoton lisääntyminen todettiin sekvenssistä ja TLR9:stä riippumattomaksi vasteeksi solun ulkopuolisia DNA ja RNA molekyylejä vastaan. Havainto TRACP entsyymin tuoton lisääntymisestä viittaa siihen, että TRACP entsyymillä on tehtävä solun immuunipuolustusjärjestelmässä.
Resumo:
Huntington's disease is a rare neurodegenerative disease caused by a pathologic CAG expansion in the exon 1 of the huntingtin (HTT) gene. Aggregation and abnormal function of the mutant HTT (mHTT) cause motor, cognitive and psychiatric symptoms in patients, which lead to death in 15-20 years. Currently, there is no treatment for HD. Experimental approaches based on drug, cell or gene therapy are developed and reach progressively to the clinic. Among them, mHTT silencing using small non-coding nucleic acids display important physiopathological benefit in HD experimental models.
Resumo:
BACKGROUND: Cellular processes underlying memory formation are evolutionary conserved, but natural variation in memory dynamics between animal species or populations is common. The genetic basis of this fascinating phenomenon is poorly understood. Closely related species of Nasonia parasitic wasps differ in long-term memory (LTM) formation: N. vitripennis will form transcription-dependent LTM after a single conditioning trial, whereas the closely-related species N. giraulti will not. Genes that were differentially expressed (DE) after conditioning in N. vitripennis, but not in N. giraulti, were identified as candidate genes that may regulate LTM formation. RESULTS: RNA was collected from heads of both species before and immediately, 4 or 24 hours after conditioning, with 3 replicates per time point. It was sequenced strand-specifically, which allows distinguishing sense from antisense transcripts and improves the quality of expression analyses. We determined conditioning-induced DE compared to naïve controls for both species. These expression patterns were then analysed with GO enrichment analyses for each species and time point, which demonstrated an enrichment of signalling-related genes immediately after conditioning in N. vitripennis only. Analyses of known LTM genes and genes with an opposing expression pattern between the two species revealed additional candidate genes for the difference in LTM formation. These include genes from various signalling cascades, including several members of the Ras and PI3 kinase signalling pathways, and glutamate receptors. Interestingly, several other known LTM genes were exclusively differentially expressed in N. giraulti, which may indicate an LTM-inhibitory mechanism. Among the DE transcripts were also antisense transcripts. Furthermore, antisense transcripts aligning to a number of known memory genes were detected, which may have a role in regulating these genes. CONCLUSION: This study is the first to describe and compare expression patterns of both protein-coding and antisense transcripts, at different time points after conditioning, of two closely related animal species that differ in LTM formation. Several candidate genes that may regulate differences in LTM have been identified. This transcriptome analysis is a valuable resource for future in-depth studies to elucidate the role of candidate genes and antisense transcription in natural variation in LTM formation.
Resumo:
Obesity development during psychotropic treatments represents a major health issue in psychiatry. Melanin-concentrating hormone receptor 2 (MCHR2) is a central receptor involved in energy homeostasis. MCHR2 shares its promoter region with MCHR2-AS1, a long antisense non-coding RNA. The aim of this study was to determine whether tagging single nucleotide polymorphisms (tSNPs) of MCHR2 and MCHR2-AS1 are associated with the body mass index (BMI) in the psychiatric and in the general population. The influence of MCHR2 and MCHR2-AS1 tSNPs on BMI was firstly investigated in a discovery psychiatric sample (n1 = 474). Positive results were tested for replication in two other psychiatric samples (n2 = 164, n3 = 178) and in two population-based samples (CoLaus, n4 = 5409; GIANT, n5 = 113809). In the discovery sample, TT carriers of rs7754794C>T had 1.08 kg/m2 (p = 0.04) lower BMI as compared to C-allele carriers. This observation was replicated in an independent psychiatric sample (-2.18 kg/m2; p = 0.009). The association of rs7754794C>T and BMI seemed stronger in subjects younger than 45 years (median of age). In the population-based sample, a moderate association was observed (-0.17 kg/m2; p = 0.02) among younger individuals (<45y). Interestingly, this association was totally driven by patients meeting lifetime criteria for atypical depression, i.e. major depressive episodes characterized by symptoms such as an increased appetite. Indeed, patients with atypical depression carrying rs7754794-TT had 1.17 kg/m2 (p = 0.04) lower BMI values as compared to C-allele carriers, the effect being stronger in younger individuals (-2.50 kg/m2; p = 0.03; interaction between rs7754794 and age: p-value = 0.08). This study provides new insights on the possible influence of MCHR2 and/or MCHR2-AS1 on obesity in psychiatric patients and on the pathophysiology of atypical depression.
Resumo:
One old dream of the chemist in the field of the drug research is to create molecules capable of reaching their target with the precision of a missile. To accomplish it these molecules must have the propriety of distinguishing qualitative differences between healthy and diseased cells. A therapy based on this principle, able of eradicating specifically defective cells, or cells affected by a pathogen has an enormous advantage with the regard to the classical approach in which the cytotoxic drugs merely exploit quantitative biochemical and kinetic differences between abnormal and normal cells. We present in this article a review on the chemical synthesis of analogues of desoxyribonucleotides and on results obtained on the specific and irreversible inhibition of undesired genetic expression using the antisense principle.
Resumo:
A large number of DNA sequences corresponding to human and animal transcripts have been filed in data banks, as cDNAs or ESTs (expression sequence tags). However, the actual function of their corresponding gene products is still largely unknown. Several of these genes may play a role in regulation of important biological processes such as cell division, differentiation, malignant transformation and oncogenesis. Elucidation of gene function is based on 2 main approaches, namely, overexpression and expression interference, which respectively mimick or suppress a given phenotype. The currently available tools and experimental approaches to gene functional analysis and the most recent advances in mass cDNA screening by functional analysis are discussed.
Resumo:
Vertebrate gap junctions are aggregates of transmembrane channels which are composed of connexin (Cx) proteins encoded by at least fourteen distinct genes in mammals. Since the same Cx type can be expressed in different tissues and more than one Cx type can be expressed by the same cell, the thorough identification of which connexin is in which cell type and how connexin expression changes after experimental manipulation has become quite laborious. Here we describe an efficient, rapid and simple method by which connexin type(s) can be identified in mammalian tissue and cultured cells using endonuclease cleavage of RT-PCR products generated from "multi primers" (sense primer, degenerate oligonucleotide corresponding to a region of the first extracellular domain; antisense primer, degenerate oligonucleotide complementary to the second extracellular domain) that amplify the cytoplasmic loop regions of all known connexins except Cx36. In addition, we provide sequence information on RT-PCR primers used in our laboratory to screen individual connexins and predictions of extension of the "multi primer" method to several human connexins.
Resumo:
Water channels or aquaporins (AQPs) have been identified in a large variety of tissues. Nevertheless, their role in the human gastrointestinal tract, where their action is essential for the reabsorption and secretion of water and electrolytes, is still unclear. The purpose of the present study was to investigate the structure and function of water channels expressed in the human colon. A cDNA fragment of about 420 bp with a 98% identity to human AQP3 was amplified from human stomach, small intestine and colon by reverse transcription polymerase chain reaction (RT-PCR) and a transcript of 2.2 kb was expressed more abundantly in colon than in jejunum, ileum and stomach as indicated by Northern blots. Expression of mRNA from the colon of adults and children but not from other gastrointestinal regions in Xenopus oocytes enhanced the osmotic water permeability, and the urea and glycerol transport in a manner sensitive to an antisense AQP3 oligonucleotide, indicating the presence of functional AQP3. Immunocytochemistry and immunofluorescence studies in human colon revealed that the AQP3 protein is restricted to the villus epithelial cells. The immunostaining within these cells was more intense in the apical than in the basolateral membranes. The presence of AQP3 in villus epithelial cells suggests that AQP3 is implicated in water absorption across human colonic surface cells.
Resumo:
Gene therapy for hypertension is needed for the next generation of antihypertensive drugs. Current drugs, although effective, have poor compliance, are expensive and short-lasting (hours or one day). Gene therapy offers a way to produce long-lasting antihypertensive effects (weeks, months or years). We are currently using two strategies: a) antisense oligodeoxynucleotides (AS-ODN) and b) antisense DNA delivered in viral vectors to inhibit genes associated with vasoconstrictive properties. It is not necessary to know all the genes involved in hypertension, since many years of experience with drugs show which genes need to be controlled. AS-ODN are short, single-stranded DNA that can be injected in naked form or in liposomes. AS-ODN, targeted to angiotensin type 1 receptors (AT1-R), angiotensinogen (AGT), angiotensin converting enzyme, and ß1-adrenergic receptors effectively reduce hypertension in rat models (SHR, 2K-1C) and cold-induced hypertension. A single dose is effective up to one month when delivered with liposomes. No side effects or toxic effects have been detected, and repeated injections can be given. For the vector, adeno-associated virus (AAV) is used with a construct to include a CMV promoter, antisense DNA to AGT or AT1-R and a reporter gene. Results in SHR demonstrate reduction and slowing of development of hypertension, with a single dose administration. Left ventricular hypertrophy is also reduced by AAV-AGT-AS treatment. Double transgenic mice (human renin plus human AGT) with high angiotensin II causing high blood pressure, treated with AAV-AT1-R-AS, show a normalization of blood pressure for over six months with a single injection of vector. We conclude that ODNs will probably be developed first because they can be treated like drugs for the treatment of hypertension with long-term effects. Viral vector delivery needs more engineering to be certain of its safety, but one day may be used for a very prolonged control of blood pressure.
Resumo:
In addition to the mutations that underlie most cases of the multiple endocrine neoplasia type 1 (MEN1) syndrome, somatic mutations of the MEN1 gene have also been described in sporadic tumors like gastrinomas, insulinomas and bronchial carcinoid neoplasm. We examined exon 2 of this gene, where most of the mutations have been described, in 148 endocrine and nonendocrine sporadic tumors. DNA was obtained by phenol/chloroform extraction and ethanol precipitation from 92 formalin-fixed, paraffin-embedded samples, and from 40 fresh tumor tissue samples. We used 5 pairs of primers to encompass the complete coding sequence of exon 2 of the MEN1 gene that was screened by the polymerase chain reaction-single-stranded conformation polymorphism (PCR-SSCP) technique in 78 sporadic thyroid cancers: 28 follicular adenomas, 35 papillary carcinomas, 14 follicular carcinomas, and 1 anaplastic thyroid carcinoma. We also examined 46 adrenal lesions (3 hyperplasias, 3 adenomas and 35 adrenocortical carcinomas, 2 pheochromocytomas, 2 ganglioneuroblastomas, and 1 lymphoma) and 24 breast cancers (6 noninvasive, 16 infiltrating ductal, and 2 invasive lobular tumors). The PCR product of 5 tumors suspected to present band shifts by SSCP was cloned. Direct sense and antisense sequencing did not identify mutations. These results suggest that the MEN1 gene is not important in breast, thyroid or adrenal sporadic tumorigenesis. Because the frequency of mutations varies significantly among tumor subgroups and allelic deletions are frequently observed at 11q13 in thyroid and adrenal cancers, another tumor suppressor gene residing in this region is likely to be involved in the tumorigenesis of these neoplasms.
Resumo:
Oligonucleotides have a wide range of applications in fields such as biotechnology, molecular biology, diagnosis and therapy. However, the spectrum of uses can be broadened by introducing chemical modifications into their structures. The most prolific field in the search for new oligonucleotide analogs is the antisense strategy, where chemical modifications confer appropriate characteristics such as hybridization, resistance to nucleases, cellular uptake, selectivity and, basically, good pharmacokinetic and pharmacodynamic properties. Combinatorial technology is another research area where oligonucleotides and their analogs are extensively employed. Aptamers, new catalytic ribozymes and deoxyribozymes are RNA or DNA molecules individualized from a randomly synthesized library on the basis of a particular property. They are identified by repeated cycles of selection and amplification, using PCR technologies. Modified nucleotides can be introduced either during the amplification procedure or after selection.
Resumo:
The establishment of dorsal-ventral polarity in Drosophila is a complex process which involves the action of maternal and zygotically expressed genes. Interspecific differences in the expression pattern of some of these genes have been described in other species. Here we present the expression of dorsal-ventral genes during early embryogenesis in the lower dipteran Rhynchosciara americana. The expression of four genes, the ventralizing genes snail (sna) and twist (twi) and the dorsalizing genes decapentaplegic (dpp) and zerknüllt (zen), was investigated by whole-mount in situ hybridization. Sense and antisense mRNA were transcribed in vitro using UTP-digoxigenin and hybridized at 55°C with dechorionated fixed embryos. Staining was obtained with anti-digoxigenin alkaline phosphatase-conjugated antibody revealed with NBT-BCIP solution. The results showed that, in general, the spatial-temporal expression of R. americana dorsal-ventral genes is similar to that observed in Drosophila, where twi and sna are restricted to the ventral region, while dpp and zen are expressed in the dorsal side. The differences encountered were subtle and probably represent a particular aspect of dorsal-ventral axis determination in R. americana. In this lower dipteran sna is expressed slightly later than twi and dpp expression is expanded over the lateral ectoderm during cellular blastoderm stage. These data suggest that the establishment of dorsal-ventral polarity in R. americana embryos follows a program similar to that observed in Drosophila melanogaster.
Resumo:
TP53, a tumor suppressor gene, has a critical role in cell cycle, apoptosis and cell senescence and participates in many crucial physiological and pathological processes. Identification of TP53 polymorphism in older people and age-related diseases may provide an understanding of its physiology and pathophysiological role as well as risk factors for complex diseases. TP53 codon 72 (TP53:72) polymorphism was investigated in 383 individuals aged 66 to 97 years in a cohort from a Brazilian Elderly Longitudinal Study. We investigated allele frequency, genotype distribution and allele association with morbidities such as cardiovascular disease, type II diabetes, obesity, neoplasia, low cognitive level (dementia), and depression. We also determined the association of this polymorphism with serum lipid fractions and urea, creatinine, albumin, fasting glucose, and glycated hemoglobin levels. DNA was isolated from blood cells, amplified by PCR using sense 5'-TTGCCGTCCCAAGCAATGGATGA-3' and antisense 5'-TCTGGGAAGGGACAGAAGATGAC-3' primers and digested with the BstUI enzyme. This polymorphism is within exon 4 at nucleotide residue 347. Descriptive statistics, logistic regression analysis and Student t-test using the multiple comparison test were used. Allele frequencies, R (Arg) = 0.69 and P (Pro) = 0.31, were similar to other populations. Genotype distributions were within Hardy-Weinberg equilibrium. This polymorphism did not show significant association with any age-related disease or serum variables. However, R allele carriers showed lower HDL levels and a higher frequency of cardiovascular disease than P allele subjects. These findings may help to elucidate the physiopathological role of TP53:72 polymorphism in Brazilian elderly people.