852 resultados para Antarctic Thresholds - Ecosystem Resilience and Adaptation
Resumo:
During the Middle Miocene climate transition about 14 million years ago, the Antarctic ice sheet expanded to near-modern volume. Surprisingly, this ice sheet growth was accompanied by a warming in the surface waters of the Southern Ocean, whereas a slight deep-water temperature increase was delayed by more than 200 thousand years. Here we use a coupled atmosphere-ocean model to assess the relative effects of changes in atmospheric CO2 concentration and ice sheet growth on regional and global temperatures. In the simulations, changes in the wind field associated with the growth of the ice sheet induce changes in ocean circulation, deep-water formation and sea-ice cover that result in sea surface warming and deep-water cooling in large swaths of the Atlantic and Indian ocean sectors of the Southern Ocean. We interpret these changes as the dominant ocean surface response to a 100-thousand-year phase of massive ice growth in Antarctica. A rise in global annual mean temperatures is also seen in response to increased Antarctic ice surface elevation. In contrast, the longer-term surface and deep-water temperature trends are dominated by changes in atmospheric CO2 concentration. We therefore conclude that the climatic and oceanographic impacts of the Miocene expansion of the Antarctic ice sheet are governed by a complex interplay between wind field, ocean circulation and the sea-ice system.
Resumo:
The Antarctic continental slope spans the depths from the shelf break (usually between 500 and 1000 m) to ~3000 m, is very steep, overlain by 'warm' (2-2.5 °C) Circumpolar Deep Water (CDW), and life there is poorly studied. This study investigates whether life on Antarctica's continental slope is essentially an extension of the shelf or the abyssal fauna, a transition zone between these or clearly distinct in its own right. Using data from several cruises to the Weddell Sea and Scotia Sea, including the ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) I-III, BIOPEARL (Biodiversity, Phylogeny, Evolution and Adaptive Radiation of Life in Antarctica) 1 and EASIZ (Ecology of the Antarctic Sea Ice Zone) II cruises as well as current databases (SOMBASE, SCAR-MarBIN), four different taxa were selected (i.e. cheilostome bryozoans, isopod and ostracod crustaceans and echinoid echinoderms) and two areas, the Weddell Sea and the Scotia Sea, to examine faunal composition, richness and affinities. The answer has important ramifications to the link between physical oceanography and ecology, and the potential of the slope to act as a refuge and resupply zone to the shelf during glaciations. Benthic samples were collected using Agassiz trawl, epibenthic sledge and Rauschert sled. By bathymetric definition, these data suggest that despite eurybathy in some of the groups examined and apparent similarity of physical conditions in the Antarctic, the shelf, slope and abyssal faunas were clearly separated in the Weddell Sea. However, no such separation of faunas was apparent in the Scotia Sea (except in echinoids). Using a geomorphological definition of the slope, shelf-slope-abyss similarity only changed significantly in the bryozoans. Our results did not support the presence of a homogenous and unique Antarctic slope fauna despite a high number of species being restricted to the slope. However, it remains the case that there may be a unique Antarctic slope fauna, but the paucity of our samples could not demonstrate this in the Scotia Sea. It is very likely that various ecological and evolutionary factors (such as topography, water-mass and sediment characteristics, input of particulate organic carbon (POC) and glaciological history) drive slope distinctness. Isopods showed greatest species richness at slope depths, whereas bryozoans and ostracods were more speciose at shelf depths; however, significance varied across Weddell Sea and Scotia Sea and depending on bathymetric vs. geomorphological definitions. Whilst the slope may harbour some source populations for localised shelf recolonisation, the absence of many shelf species, genera and even families (in a poorly dispersing taxon) from the continental slope indicate that it was not a universal refuge for Antarctic shelf fauna.
Resumo:
We reconstruct the aquatic ecosystem interactions since the last interglacial period in the oldest, most diverse, hydrologically connected European lake system, by using palaeolimnological diatom and selected geochemistry data from Lake Ohrid “DEEP site” core and equivalent data from Lake Prespa core, Co1215. Driven by climate forcing, the lakes experienced two adaptive cycles during the last 92 ka: "interglacial and interstadial" and "glacial" cycle. The short-term ecosystems reorganizations, e.g. regime shifts within these cycles substantially differ between the lakes, as evident from the inferred amplitudes of variation. The deeper Lake Ohrid shifted between ultra oligo- and oligotrophic regimes in contrast to the much shallower Lake Prespa, which shifted from a deeper, (oligo-) mesotrophic to a shallower, eutrophic lake and vice versa. Due to the high level of ecosystem stability (e.g. trophic state, lake level), Lake Ohrid appears relatively resistant to external forcing, such as climate and environmental change. Recovering in a relatively short time from major climate change, Lake Prespa is a resilient ecosystem. At the DEEP site, the decoupling between the lakes' response to climate change is marked in the prolonged and gradual changes during the MIS 5/4 and 2/1 transitions. These response differences and the lakes' different physical and chemical properties may limit the influence of Lake Prespa on Lake Ohrid. Regime shifts of Lake Ohrid due to potential hydrological change in Lake Prespa are not evident in the data presented here. Moreover, a complete collapse of the ecosystems functionality and loss of their diatom communities did not happen in either lake for the period presented in the study.
Resumo:
Fishermen depend on Lake Inle in Myanmar for their livelihood. However, the lake has been undergoing environmental degradation over the years. Adding to the long-term decrease in the catch because of this degradation, these fishermen faced extremely low water levels in 2010, which they had previously not experienced. Based on field surveys, this paper aims to reveal how fishermen adapted and coped with the changing environment as well as the sudden shock of the abnormally low water levels.
Resumo:
Farmers in Africa are facing climate change and challenging rural livelihoods while maintaining agricultural systems that are not resilient. By 2050 the mean estimates of production of key staple crops in Africa such as maize, sorghum, millet, groundnut, and cassava are expected to decrease by between 8 and 22 percent (Schlenker and Lobell 2010). In Kenya, although projections of rainfall do not show dramatic decreases, the distribution of impacts is clearly negative for most crops. As increases in temperature will lead to increases in evapotranspiration, a potential increase in rainfall in Kenya may not offset the expected increases in agricultural water needs (Herrero et al. 2010). In order to respond to these present and future challenges, potential mitigation and adaptation options have been developed. However, implementation is not evident. In addition to their benefits in either mitigating or reducing the vulnerability of climate change effects, many of these options do not have economic costs and even provide economic benefits (e.g. savings in the consumption of energy or natural resources). Nevertheless, it is demonstrated that even when there are no biophysical, technological or economic constraints and despite their potential benefits from either the economic or environmental climate change point of view, not all farmers are willing to adopt these measures. This reflects the key role that behavioural barriers can play in the uptake of mitigation and adaptation measures.
Resumo:
Bacterial chemotaxis is widely studied because of its accessibility and because it incorporates processes that are important in a number of sensory systems: signal transduction, excitation, adaptation, and a change in behavior, all in response to stimuli. Quantitative data on the change in behavior are available for this system, and the major biochemical steps in the signal transduction/processing pathway have been identified. We have incorporated recent biochemical data into a mathematical model that can reproduce many of the major features of the intracellular response, including the change in the level of chemotactic proteins to step and ramp stimuli such as those used in experimental protocols. The interaction of the chemotactic proteins with the motor is not modeled, but we can estimate the degree of cooperativity needed to produce the observed gain under the assumption that the chemotactic proteins interact directly with the motor proteins.
The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse.
Resumo:
Because of its prominent role in global biomass storage, land vegetation is the most obvious biota to be investigated for records of dramatic ecologic crisis in Earth history. There is accumulating evidence that, throughout the world, sedimentary organic matter preserved in latest Permian deposits is characterized by unparalleled abundances of fungal remains, irrespective of depositional environment (marine, lacustrine, fluviatile), floral provinciality, and climatic zonation. This fungal event can be considered to reflect excessive dieback of arboreous vegetation, effecting destabilization and subsequent collapse of terrestrial ecosystems with concomitant loss of standing biomass. Such a scenario is in harmony with predictions that the Permian-Triassic ecologic crisis was triggered by the effects of severe changes in atmospheric chemistry arising from the rapid eruption of the Siberian Traps flood basalts.
Resumo:
Cultural inheritance can be considered as a mechanism of adaptation made possible by communication, which has reached its greatest development in humans and can allow long-term conservation or rapid change of culturally transmissible traits depending on circumstances and needs. Conservativeness/flexibility is largely modulated by mechanisms of sociocultural transmission. An analysis was carried out by testing the fit of three models to 47 cultural traits (classified in six groups) in 277 African societies. Model A (demic diffusion) is conservation over generations, as shown by correlations of cultural traits with language, used as a measure of historical connection. Model B (environmental adaptation) is measured by correlation to the natural environment. Model C (cultural diffusion) is the spread to neighbors by social contact in an epidemic-like fashion and was tested by measuring the tightness of geographic clustering of the traits. Most traits examined, in particular those affecting family structure and kinship, showed great conservation over generations, as shown by the fit of model A. They are most probably transmitted by family members. This is in agreement with the theoretical demonstration that cultural transmission in the family (vertical) is the most conservative one. Some traits show environmental effects, indicating the importance of adaptation to physical environment. Only a few of the 47 traits showed tight geographic clustering indicating that their spread to nearest neighbors follows model C, as is usually the case for transmission among unrelated people (called horizontal transmission).
Resumo:
Overview. Questions about the interface between the multilateral climate regime embodied in the Kyoto Protocol and the multilateral trade regime embodied in the World Trade Organisation (WTO) have become especially timely since the fall of 2001. At that time, ministerial-level meetings in Marrakech and Doha agreed to advance the agendas, respectively, for the implementation of the Kyoto Protocol and for negotiations on further agreements at the WTO. There have been concerns that each of these multilateral arrangements could constrain the effectiveness of the other, and these concerns will become more salient with the entry into force of the Kyoto Protocol. There are questions about whether and how the rights and obligations of the members of the WTO and the parties to the Protocol may conflict. Of particular concern is whether provisions in the Protocol, as well as government policies and business activities undertaken in keeping with those provisions, may conflict with the WTO non-discrimination principles of national treatment and most-favoured nation treatment. The WTO agreements that are potentially relevant to climate change issues include many of the individual Uruguay Round agreements and subsequent agreements as well. The principal elements of the Kyoto Protocol that are particularly relevant are its provisions concerning emissions trading, the Clean Development Mechanism, Joint Implementation, enforcement, and parties’ policies and measures. In combination, therefore, there are numerous potential points of intersection between the elements of the Kyoto Protocol and the WTO agreements. Previous studies have clarified many issues, as they have focused on particular aspects of the regimes’ relationships. Yet, some analyses suggest that the two regimes are largely compatible and even mutually reinforcing, while others suggest that there are significant conflicts between them. Those and other studies are referenced in the ‘suggestions for further reading’ section at the end of the paper.1 The present paper seeks to expand on those studies by providing additional breadth and depth to understanding of the issues. The analysis gives special attention to key issues on the agenda – i.e. issues that are particularly problematic because of the likelihood of occurrence of specific conflicts and the significance of their economic and/or political consequences. The paper adopts a modified ‘triage’ approach, which classifies points of intersection as (a) highly problematic and clearly in need of further attention, (b) perhaps problematic but less urgent, and (c) apparently not problematic, at least at this point in time. The principal conclusions are that: · The missions and objectives of the two regimes are largely compatible, and their operations are potentially mutually reinforcing in several respects. · Some provisions of the multilateral agreements that may superficially seem at odds are not likely to become particularly problematic in practice. · ‘Domestic policies and measures’ that governments may undertake in the context of the Protocol could pose difficult issues in the context of WTO dispute cases. · Recent WTO agreements and dispute cases acknowledge the legitimacy of the ‘precautionary principle’ and are thus consistent with the environmental protection objectives of the Protocol. · The relative newness of the climate regime creates opportunities for institutional adaptation, as compared with the constraints of tradition in the trade-investment regime. · The prospect of largely independent evolutionary paths for the two regimes poses a series of issues about future international regime design and management, which may require new institutional arrangements. In sum, the present paper thus finds that although there are some areas of interaction that are problematic, the two regimes may nevertheless co-exist in relative harmony in other respects –more like ‘neighbours’ than either ‘friends’ or ‘foes’, as Krist (2001) has suggested.