979 resultados para Ant colony algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Division of labor is a widely studied aspect of colony behavior of social insects. Division of labor models indicate how individuals distribute themselves in order to perform different tasks simultaneously. However, models that study division of labor from a dynamical system point of view cannot be found in the literature. In this paper, we define a division of labor model as a discrete-time dynamical system, in order to study the equilibrium points and their properties related to convergence and stability. By making use of this analytical model, an adaptive algorithm based on division of labor can be designed to satisfy dynamic criteria. In this way, we have designed and tested an algorithm that varies the response thresholds in order to modify the dynamic behavior of the system. This behavior modification allows the system to adapt to specific environmental and collective situations, making the algorithm a good candidate for distributed control applications. The variable threshold algorithm is based on specialization mechanisms. It is able to achieve an asymptotically stable behavior of the system in different environments and independently of the number of individuals. The algorithm has been successfully tested under several initial conditions and number of individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we will discuss the setting of the parameters of the Max-Min Ant System. In the literature it is possible to find theoretical and practical considerations of these parameters, nevertheless it seems that they have not been studied in a joint manner. We propose a theoretical study of the relationship between them, giving the user some further knowledge at the time of setting the algorithm's parameters and some new idea are proposed. In particular, the number of ants is studied in more detail. Then we will study the settings of the Tmax and Tmin in a way which is diferent from the most commonly used technique, taking in consideration theoretical as well as experimental problems. Finally, some experiments are shown that demonstrate the validity of our proposals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A central issue in evolutionary biology is the extent to which complex social organization is under genetic control. We have found that a single genomic element marked by the protein-encoding gene Gp-9 is responsible for the existence of two distinct forms of social organization in the fire ant Solenopsis invicta. This genetic factor influences the reproductive phenotypes and behavioral strategies of queens and determines whether workers tolerate a single fertile queen or multiple queens per colony. Furthermore, this factor affects worker tolerance of queens with alternate genotypes, thus explaining the dramatic differences in Gp-9 allele frequencies observed between the two social forms in the wild. These findings reveal how a single genetic factor can have major effects on complex social behavior and influence the nature of social organization.