977 resultados para Anastasius I, Emperor of the East, ca. 430-518.
Resumo:
An experiment was conducted to investigate the effects of increasing the level of two sources of fibrous by-products, orange pulp (OP) and carob meal (CM), in iso-NDF growing-finishing pig diets on nutrient balance, slurry composition and potential ammonia (NH3) and methane (CH4) emissions. Thirty pigs (85.4 ± 12.3 kg) were fed five iso-nutritive diets: a commercial control wheat/barley (C) and four experimental diets including two sources of fibrous by-products (OP and CM) and two dietary levels (75 and 150 g/kg) in a 2 × 2 factorial arrangement. After a 14-day adaptation period, faeces and urine were collected separately for 7 days to measure nutrient digestibility and the excretory patterns of N from pigs (6 replicates per diet) housed individually in metabolic pens. For each animal, the derived NH3 and CH4 emissions were measured in samples of slurry over an 11- and 100-day storage periods, respectively. Source and level of the fibrous by-products affected digestion efficiency in a different way as the coefficients of total tract apparent digestibility (CTTAD) for dry matter (DM), organic matter (OM), fibre fractions and gross energy increased with OP but decreased with CM (P < 0.05). Crude protein CTTAD decreased with the inclusion of both sources of fibre, being lower at the highest dietary level. Faecal concentration of fibre fractions increased (P < 0.05) with the level of inclusion of CM but decreased with that of OP (P < 0.01). High dietary level for both sources of fibre increased (P < 0.02) CP faecal content but urine N content decreased (from 205 to 168 g/kg DM, P < 0.05) in all the fibre-supplemented compared to C diet. Additionally, the proportions of undigested dietary, water soluble, and bacterial and endogenous debris of faecal N excretion were not affected by treatments. The initial slurry characteristics did not differ among different fibre sources and dietary levels, except pH, which decreased at the highest by-product inclusion levels. Ammonia emission per kg of slurry was lower in all the fibre-supplemented diets than in C diet (from 2.44 to 1.81 g, P < 0.05). Additionally, slurries from the highest dietary level of by-products tended (P < 0.06) to emit less NH3 per kg of initial total Kjeldahl N and showed a lower B0, independently of the fibre source. Thus, the fibre sources and their dietary levels affected pig nutrient digestion and composition of urine and faeces, showing potential to decrease NH3 and CH4 emissions at high levels of inclusion, independently of type of fibre.
Resumo:
We introduced disulfide bonds to lock the integrin αLβ2 I domain in predicted open, ligand binding or closed, nonbinding conformations. Transfectants expressing αLβ2 heterodimers containing locked-open but not locked-closed or wild-type I domains constitutively adhered to intercellular adhesion molecule-1 (ICAM-1) substrates. Locking the I domain closed abolished constitutive and activatable adhesion. The isolated locked-open I domain bound as well as the activated αLβ2 heterodimer, and binding was abolished by reduction of the disulfide. Lovastatin, which binds under the conformationally mobile C-terminal α-helix of the I domain, inhibited binding to ICAM-1 by αLβ2 with wild-type, but not locked-open I domains. These data establish the importance of conformational change in the αL I domain for adhesive function and show that this domain is sufficient for full adhesive activity.
Resumo:
Hemochromatosis (HC) is an inherited disorder of iron absorption, mapping within the human major histocompatibility complex (MHC). We have identified a multigene system in the murine MHC that contains excellent candidates for the murine equivalent of the human HC locus and implicate nonclassical class I genes in the control of iron absorption. This gene system is characterized by multiple copies of two head-to-head genes encoded on opposite strands and driven by one common regulatory motif. This regulatory motif has a striking homology to the promoter region of the beta-globin gene, a gene obviously involved in iron metabolism and hence termed beta-globin analogous promoter (betaGAP). Upstream of the betaGAP sequence are nonclassical class I genes. At least one of these nonclassical class I genes, Q2, is expressed in the gastrointestinal tract, the primary site of iron absorption. Also expressed in the gastrointestinal tract and downstream of the betaGAP motif is a second set of putative genes, termed Hephaestus (HEPH). Based on these observations, we hypothesized that the genes that seem to be controlled by the betaGAP regulatory motifs would be responsible for the control of Fe absorption. As a test of this hypothesis, we predicted that mice which have altered expression of class I gene products, the beta2-microglobulin knockout mice, [beta2m(-/-)], would develop Fe overload. This prediction was confirmed, and these results indicate beta2m-associated proteins are involved in the control of intestinal Fe absorption.