970 resultados para Ammonium aminofluoride


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] This thesis focuses on the zooplankton NH4+ regeneration that supports about the 80% of the phytoplankton requirements. In its more oceanographic facet, it elucidates the control that the mesozooplankton community exerts on the primary productivity in the northern Benguela, and models the N-fluxes from zooplankton NH4+ excretion. At the physiological level, it examines the relationship between the NH4+ excretion and its associated biochemistry. Assuming the substrate availability as the critical factor in regulating the velocity of NH4+ production, a bisubstrate model was developed to predict its actual rate in zooplankton. Overall, this research provides knowledge about the implications of zooplankton NH4+ excretion on the biogeochemical cycles, and introduces new insights into the study of this process from enzymatic measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]Zooplankton play a key role in marine ecosystems and their biogeochemical cycles. They exert control over the primary productivity through the consumption of organic matter and, at the same time, the release of nutrients that sustains the phytoplankton growth. This thesis focuses on the NH+ 4 excretion processes related to these heterotrophic organisms that support, at a global scale, about the 80% of the phytoplankton requirements. However, thereisno clear constant pattern in the zooplankton contribution to theNH+ 4 regeneration throughout thedifferent pelagic ecosystems, so continuousmonitoring of thismetabolic processisessential at widetemporal and spatial scales...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The G2, G3, CBS-QB3, and CBS-APNO model chemistry methods and the B3LYP, B3P86, mPW1PW, and PBE1PBE density functional theory (DFT) methods have been used to calculate ΔH° and ΔG° values for ionic clusters of the ammonium ion complexed with water and ammonia. Results for the clusters NH4+(NH3)n and NH4+(H2O)n, where n = 1−4, are reported in this paper and compared against experimental values. Agreement with the experimental values for ΔH° and ΔG° for formation of NH4+(NH3)n clusters is excellent. Comparison between experiment and theory for formation of the NH4+(H2O)n clusters is quite good considering the uncertainty in the experimental values. The four DFT methods yield excellent agreement with experiment and the model chemistry methods when the aug-cc-pVTZ basis set is used for energetic calculations and the 6-31G* basis set is used for geometries and frequencies. On the basis of these results, we predict that all ions in the lower troposphere will be saturated with at least one complete first hydration shell of water molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mixed molecular dynamics/quantum mechanics model has been applied to the ammonium/water clustering system. The use of the high level MP2 calculation method and correlated basis sets, such as aug-cc-pVDZ and aug-cc-pVTZ, lends confidence in the accuracy of the extrapolated energies. These calculations provide electronic and free energies for the formation of clusters of ammonium and 1−10 water molecules at two different temperatures. Structures and thermodynamic values are in good agreement with previous experimental and theoretical results. The estimated concentration of these clusters in the troposphere was calculated using atmospheric amounts of ammonium and water. Results show the favorability of forming these clusters and implications for ion-induced nucleation in the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aqueous phase processing of glyoxylic acid, pyruvic acid, oxalic acid and methylglyoxal was studied simulating dark and radical free atmospheric aqueous aerosol. A novel observation of the cleavage of a carbon-carbon bond in pyruvic acid and glyoxylic acid leading to their decarboxylation was made in the presence of ammonium salts but no decarboxylation was observed from oxalic acid. The empirical rate constants for decarboxylation were determined. The structure of the acid, ionic environment of solution and concentration of species found to affect the decarboxylation process. A tentative set of reaction mechanisms was proposed involving nucleophilic attack by ammonia on the carbonyl carbon leading to fragmentation of the carbon-carbon bond between the carbonyl and carboxyl carbons. Whereas, the formation of high molecular weight organic species was observed in the case of methylglyoxal. The elemental compositions of the species were determined. It was concluded that, additional pathways that are not currently known likely contribute to aqueous phase processing leading to high molecular weight organic species. Under similar conditions in atmospheric aerosol, the aqueous phase processing will markedly impact the physicochemical properties of aerosol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Completion of fungal, plant and human genomes paved the way to the identification of erythrocytic rhesus proteins and their kidney homologs as ammonium transporters. Ammonium is the preferred nitrogen source of bacteria and fungi, and plants acquire nitrogen from the soil in the form of ammonium [1]. In animals and humans, assimilated forms of nitrogen - amino acids - are much preferred for nutrition, and, in the case of ammonotelic animals, ammonium is used for the excretion of nitrogen instead. In the human kidney, ammonium is produced, reabsorbed and excreted as a means to maintain pH balance and to get rid of surplus inorganic nitrogen. Whether ammonium transport also has a role in the pH regulation of other organs is not known and the molecular mechanisms were not, up to now, understood.