974 resultados para Alzheimer Demenz
Resumo:
Resveratrol is a polyphenol that is mainly found in grapes and red wine and has been reported to be a caloric restriction (CR) mimetic driven by Sirtuin 1 (SIRT1) activation. Resveratrol increases metabolic rate, insulin sensitivity, mitochondrial biogenesis and physical endurance, and reduces fat accumulation in mice. In addition, resveratrol may be a powerful agent to prevent age-associated neurodegeneration and to improve cognitive deficits in Alzheimer's disease (AD). Moreover, different findings support the view that longevity in mice could be promoted by CR. In this study, we examined the role of dietary resveratrol in SAMP8 mice, a model of age-related AD. We found that resveratrol supplements increased mean life expectancy and maximal life span in SAMP8 and in their control, the related strain SAMR1. In addition, we examined the resveratrol-mediated neuroprotective effects on several specific hallmarks of AD. We found that long-term dietary resveratrol activates AMPK pathways and pro-survival routes such as SIRT1 in vivo. It also reduces cognitive impairment and has a neuroprotective role, decreasing the amyloid burden and reducing tau hyperphosphorylation.
Resumo:
Resveratrol is a polyphenol that is mainly found in grapes and red wine and has been reported to be a caloric restriction (CR) mimetic driven by Sirtuin 1 (SIRT1) activation. Resveratrol increases metabolic rate, insulin sensitivity, mitochondrial biogenesis and physical endurance, and reduces fat accumulation in mice. In addition, resveratrol may be a powerful agent to prevent age-associated neurodegeneration and to improve cognitive deficits in Alzheimer's disease (AD). Moreover, different findings support the view that longevity in mice could be promoted by CR. In this study, we examined the role of dietary resveratrol in SAMP8 mice, a model of age-related AD. We found that resveratrol supplements increased mean life expectancy and maximal life span in SAMP8 and in their control, the related strain SAMR1. In addition, we examined the resveratrol-mediated neuroprotective effects on several specific hallmarks of AD. We found that long-term dietary resveratrol activates AMPK pathways and pro-survival routes such as SIRT1 in vivo. It also reduces cognitive impairment and has a neuroprotective role, decreasing the amyloid burden and reducing tau hyperphosphorylation.
Resumo:
In this report, we confirm our previous findings of increased concentrations of soluble amyloid-β protein precursor (sAβPP) in cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) in a large cohort of patients (n = 314), not overlapping with those of our previous study, and we extend our observations by including a control group of participants with normal cognition. In addition, we investigate the effects of age, the APOEε4 genotype, and the blood-CSF barrier function on the concentrations of sAβPPα and sAβPPβ. The study participants were categorized according to clinical-neuropsychological criteria, supported by CSF neurochemical dementia diagnostics (NDD) analyses. sAβPPα concentrations in the AD group (132.0 ± 44.8) were significantly higher than in the control group (105.3 ± 37.3, p < 0.0005) but did not differ from the MCI-AD group (138.5 ± 39.5, p = 0.91). The MCI-AD group differed significantly from the MCI-O (97.3 ± 34.3, p < 0.05) group. There was no difference between the control and the MCI-O groups (p = 0.94). Similarly, sAβPPβ concentrations in the AD group (160.2 ± 54.3) were significantly higher than in the control group (129.9 ± 44.6, p < 0.005) but did not differ from the MCI-AD group (184.0 ± 56.4, p = 0.20). The MCI-AD group differed significantly from the MCI-O (127.8 ± 46.2, p < 0.05) group. There was no difference between the control and the MCI-O groups (p > 0.99). We observed highly significant correlation of the two sAβPP forms. Age and the CSF-serum albumin ratio were significant albeit weak predictors of the sAβPPα and sAβPPβ concentrations, while carrying the APOEε4 allele did not influenced the levels of the sAβPP forms. Taken together, the results strongly suggest that CSF sAβPP concentrations may be considered as an extension of already available NDD tools.
Resumo:
El presente trabajo se refiere al tema de la sobrecarga del cuidador de enfermos de Alzheimer. La sobrecarga es el resultado de la combinación de estrés psicológico, tensión física y la presión emocional en relación con la carga objetiva de la asistencia. La sobrecarga que supone cuidar puede provocar en el cuidador estados de ansiedad, estrés y depresión, además la existencia de un aumento en los gastos derivados de la enfermedad es un factor que se asocia a la sobrecarga personal y que influye en el papel del cuidador dificultando su actividad. Para analizar esta problemática es necesario mencionar las principales causas de la sobrecarga del cuidador. Estas son el impacto del cuidado del enfermo al cuidador, es decir, la falta de tiempo libre del cuidador, falta de intimidad, deterioro de la vida social, sensación de pérdida de control sobre la vida, deterioro de la salud…(prevalencia de 32,9%). La calidad de la relación interpersonal entre el enfermo y el cuidador ya que comporta situaciones de estrés (9,1%), de presión (5,9) y de dependencia del enfermo hacia el cuidador (5,3%).
Resumo:
Resveratrol is a polyphenol that is mainly found in grapes and red wine and has been reported to be a caloric restriction (CR) mimetic driven by Sirtuin 1 (SIRT1) activation. Resveratrol increases metabolic rate, insulin sensitivity, mitochondrial biogenesis and physical endurance, and reduces fat accumulation in mice. In addition, resveratrol may be a powerful agent to prevent age-associated neurodegeneration and to improve cognitive deficits in Alzheimer's disease (AD). Moreover, different findings support the view that longevity in mice could be promoted by CR. In this study, we examined the role of dietary resveratrol in SAMP8 mice, a model of age-related AD. We found that resveratrol supplements increased mean life expectancy and maximal life span in SAMP8 and in their control, the related strain SAMR1. In addition, we examined the resveratrol-mediated neuroprotective effects on several specific hallmarks of AD. We found that long-term dietary resveratrol activates AMPK pathways and pro-survival routes such as SIRT1 in vivo. It also reduces cognitive impairment and has a neuroprotective role, decreasing the amyloid burden and reducing tau hyperphosphorylation.
Resumo:
Notwithstanding the functional role that the aggregates of some amyloidogenic proteins can play in different organisms, protein aggregation plays a pivotal role in the pathogenesis of a large number of human diseases. One of such diseases is Alzheimer"s disease (AD), where the overproduction and aggregation of the β-amyloid peptide (Aβ) are regarded as early critical factors. Another protein that seems to occupy a prominent position within the complex pathological network of AD is the enzyme acetylcholinesterase (AChE), with classical and non-classical activities involved at the late (cholinergic deficit) and early (Aβ aggregation) phases of the disease. Dual inhibitors of Aβ aggregation and AChE are thus emerging as promising multi-target agents with potential to efficiently modify the natural course of AD. In the initial phases of the drug discovery process of such compounds, in vitro evaluation of the inhibition of Aβ aggregation is rather troublesome, as it is very sensitive to experimental assay conditions, and requires expensive synthetic Aβ peptides, which makes cost-prohibitive the screening of large compound libraries. Herein, we review recently developed multi-target anti-Alzheimer compounds that exhibit both Aβ aggregation and AChE inhibitory activities, and, in some cases also additional valuable activities such as BACE-1 inhibition or antioxidant properties. We also discuss the development of simplified in vivo methods for the rapid, simple, reliable, unexpensive, and high-throughput amenable screening of Aβ aggregation inhibitors that rely on the overexpression of Aβ42 alone or fused with reporter proteins in Escherichia coli.
Resumo:
Els criteris per al diagnòstic clínic de la malaltia d’Alzheimer es van establir el 1984 pel National Institute of Neurological and Communicative Disorders and Stroke (NINCDS) i la Alzheimer’s Disease and Related Disorders Association (ADRDA). D’aplicació continuada fins a l’actualitat, aquests criteris estan quedant obsolets i per tant des de diversos àmbits s’ha abogat per una revisió profunda dels mateixos. Tres grups d’experts formats per reconeguts especialistes del National Institute on Aging (NIA) i la Alzheimer’s Association proposen un conjunt de recomanacions per modificar aquests criteris en l’àmbit de la investigació clínica. Dues diferències remarcables s’inclouen en aquests nous criteris: la incorporació de biomarcadors i la formalització de diferents estadis de la malaltia d’Alzheimer. D’aquesta manera, el deteriorament cognitiu lleu s’incorpora al procés diagnòstic com un estadi més de la patologia. Tanmateix, aquests criteris es troben en revisió i, de moment sols son aplicables en l’àmbit de recerca per tal d’arribar a un consens definitiu que permeti la modificació definitiva dels criteris clínics universals a aplicar. En aquest article es presenten els principals avenços en la investigació referents a la malaltia d’Alzheimer i al Deteriorament Cognitiu lleu per tal d’emmarcar els nous criteris de recerca.
Resumo:
The neuropathology of Alzheimer disease is characterized by senile plaques, neurofibrillary tangles and cell death. These hallmarks develop according to the differential vulnerability of brain networks, senile plaques accumulating preferentially in the associative cortical areas and neurofibrillary tangles in the entorhinal cortex and the hippocampus. We suggest that the main aetiological hypotheses such as the beta-amyloid cascade hypothesis or its variant, the synaptic beta-amyloid hypothesis, will have to consider neural networks not just as targets of degenerative processes but also as contributors of the disease's progression and of its phenotype. Three domains of research are highlighted in this review. First, the cerebral reserve and the redundancy of the network's elements are related to brain vulnerability. Indeed, an enriched environment appears to increase the cerebral reserve as well as the threshold of disease's onset. Second, disease's progression and memory performance cannot be explained by synaptic or neuronal loss only, but also by the presence of compensatory mechanisms, such as synaptic scaling, at the microcircuit level. Third, some phenotypes of Alzheimer disease, such as hallucinations, appear to be related to progressive dysfunction of neural networks as a result, for instance, of a decreased signal to noise ratio, involving a diminished activity of the cholinergic system. Overall, converging results from studies of biological as well as artificial neural networks lead to the conclusion that changes in neural networks contribute strongly to Alzheimer disease's progression.
Resumo:
The failure of current strategies to provide an explanation for controversial findings on the pattern of pathophysiological changes in Alzheimer's Disease (AD) motivates the necessity to develop new integrative approaches based on multi-modal neuroimaging data that captures various aspects of disease pathology. Previous studies using [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and structural magnetic resonance imaging (sMRI) report controversial results about time-line, spatial extent and magnitude of glucose hypometabolism and atrophy in AD that depend on clinical and demographic characteristics of the studied populations. Here, we provide and validate at a group level a generative anatomical model of glucose hypo-metabolism and atrophy progression in AD based on FDG-PET and sMRI data of 80 patients and 79 healthy controls to describe expected age and symptom severity related changes in AD relative to a baseline provided by healthy aging. We demonstrate a high level of anatomical accuracy for both modalities yielding strongly age- and symptom-severity- dependant glucose hypometabolism in temporal, parietal and precuneal regions and a more extensive network of atrophy in hippocampal, temporal, parietal, occipital and posterior caudate regions. The model suggests greater and more consistent changes in FDG-PET compared to sMRI at earlier and the inversion of this pattern at more advanced AD stages. Our model describes, integrates and predicts characteristic patterns of AD related pathology, uncontaminated by normal age effects, derived from multi-modal data. It further provides an integrative explanation for findings suggesting a dissociation between early- and late-onset AD. The generative model offers a basis for further development of individualized biomarkers allowing accurate early diagnosis and treatment evaluation.
Resumo:
BACKGROUND: Three small trials suggest that intravenous immunoglobulin can affect biomarkers and symptoms of mild-to-moderate Alzheimer's disease. We tested the safety, effective dose, and infusion interval of intravenous immunoglobulin in such patients. METHODS: We did a multicentre, placebo-controlled phase 2 trial at seven sites in the USA and five in Germany. Participants with probable Alzheimer's disease aged 50-85 years were randomly assigned (by a computer-generated randomisation sequence, with block sizes of eight) to infusions every 4 weeks (0·2, 0·5, or 0·8 g intravenous immunoglobulin per kg bodyweight, or placebo) or infusions every 2 weeks (0·1, 0·25, or 0·4 g/kg, or placebo). Patients, caregivers, investigators assessing outcomes, and staff at imaging facilities and the clinical research organisation were masked to treatment allocation, but dispensing pharmacists, the statistician, and the person responsible for final PET analyses were not. Treatment was masked with opaque pouches and infusion lines. The primary endpoint was median area under the curve (AUC) of plasma amyloid β (Aβ)(1-40) between the last infusion and the final visit (2 weeks or 4 weeks depending on infusion interval) in the intention-to-treat population. The trial is registered at ClinicalTrials.gov (NCT00812565) and controlled-trials.com (ISRCTN64846759). FINDINGS: 89 patients were assessed for eligibility, of whom 58 were enrolled and 55 included in the primary analysis. Median AUC of plasma Aβ(1-40) was not significantly different for intravenous immunoglobulin compared with placebo for five of the six intervention groups (-18·0 [range -1347·0 to 1068·5] for 0·2 g/kg, -364·3 [-5834·5 to 1953·5] for 0·5 g/kg, and -351·8 [-1084·0 to 936·5] for 0·8 g/kg every 4 weeks vs -116·3 [-1379·0 to 5266·0] for placebo; and -13·8 [-1729·0 to 307·0] for 0·1 g/kg, and -32·5 [-1102·5 to 451·5] for 0·25 g/kg every 2 weeks vs 159·5 [51·5 to 303·0] for placebo; p>0·05 for all). The difference in median AUC of plasma Aβ(1-40) between the 0·4 g/kg every 2 weeks group (47·0 [range -341·0 to 72·5]) and the placebo group was significant (p=0·0216). 25 of 42 (60%) patients in the intervention group versus nine of 14 (64%) receiving placebo had an adverse event. Four of 42 (10%) patients in the intravenous immunoglobulin group versus four of 14 (29%) receiving placebo had a serious adverse event, including one stroke in the intervention group. INTERPRETATION: Intravenous immunoglobulin may have an acceptable safety profile. Our results did not accord with those from previous studies. Longer trials with greater power are needed to assess the cognitive and functional effects of intravenous immunoglobulin in patients with Alzheimer's disease.
Dimethylarginines, homocysteine metabolism, and cerebrospinal fluid markers for Alzheimer's disease.
Resumo:
Dimethylarginine and homocysteine metabolism are closely linked and alterations of both were observed in plasma and cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD). CSF parameters of homocysteine metabolism have recently been found to be associated with the CSF level of the AD biomarker phosphorylated tau (ptau) in AD patients. To investigate possible relationships between homocysteine and dimethylarginine metabolism and the AD CSF biomarkers ptau181 and amyloid-β 1-42 (Aβ42), we assessed parameters of homocysteine metabolism (CSF homocysteine, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), 5-methyltetrahydrofolate (5-MTHF)) and dimethylarginine metabolism (plasma and CSF asymmetric dimethylarginine (ADMA), symmetric dimethylarginine, L-arginine) as well as CSF Aβ42 and ptau181 in 98 controls and 51 AD patients. Multivariate linear regression analyses were performed to assess associations between the considered parameters. SAH concentrations show significant associations to CSF ADMA levels, and CSF ADMA and L-arginine to ptau181, but not to Aβ42 concentrations in AD patients. When including concentrations of homocysteine, 5-MTHF, SAM, and SAH into the analysis, CSF ADMA concentrations independently predicted ptau181 levels in AD patients but homocysteine-related metabolites were associated with ptau181 only when ADMA was removed from the analysis model. These results suggest that CSF ADMA may interact with CNS homocysteine metabolism and may contribute to neurodegeneration and accumulation of phosphorylated tau in AD. Functional and interventional studies are needed to further proof this hypothesis.
Resumo:
The aim of this doctoral thesis was to study personality characteristics of patients at an early stage of Alzheimer's disease (AD), and more specifically to describe personality and its changes over time, and to explore its possible links with psychological and symptoms (BPS) and cognitive level. The results were compared to those of a group of participants without cognitive disorder through three empirical studies. In the first study, the findings showed significant personality changes that follow a specific trend in the clinical group. The profil of personality changes showed an increase in Neuroticism and a decrease in Extraversion, Openess to experiences, and Conscientiousness over time. The second study highlighted that personality and BPS occur early in the cours of AD. Recognizing them as possible precoce signs of neurodegeneration may prove to be a key factor for early detection and intervention. In the third study, a significant association between personality changes and cognitive status was observed in the patients with incipient AD. Thus, changes in Neuroticism and Conscientiousness were linked with cognitive deterioration, whereas decreased Openness to experiences and Conscientiousness over time predicted loss of independence in daily functioning. Other well-known factors such as age, education level or civil status were taken into account to predict cognitive decline. The three studies suggested five important implications: (1) cost-effective screening should take into account premorbid and specific personality changes; (2) psycho-educative interventions should provide information on the possible personality changes and BPS that may occur at the beginning of the disease; (3) using personality traits alongside other variables in the future studies on prevention might help to better understand AD's etiology; (4) individual treatment plans (psychotherapeutic, social, and pharmacological) might be adapted to the specific changes in personality profiles; (5) more researches are needed to study the impact of social-cultural and lifestyle variables on the development of AD.
Resumo:
The distribution of immunoreactivity for the neurofilament triplet class of intermediate filament proteins was examined in the hippocampus of young, adult and elderly control cases and compared to that of Alzheimer's disease cases. In a similar fashion to non-human mammalian species, pyramidal neurons in the CA1 region showed a very low degree of neurofilament triplet immunoreactivity in the three younger control cases examined. However, in the other control cases of 49 years of age and older, many CA1 pyramidal neurons showed elevated neurofilament immunoreactivity. In the Alzheimer's disease cases, most of the surviving CA1 neurons showed intense labeling for the neurofilament triplet proteins, with many of these neurons giving off abnormal "sprouting" processes. Double labeling demonstrated that many of these neurons contained tangle-like or granular material that was immunoreactive for abnormal forms of tau and stained with thioflavine S, indicating that these neurons are in a transitional degenerative stage. An antibody to phosphorylated neurofilament proteins labeled a subset of neurofibrillary tangles in the Alzheimer's disease cases. However, following formic acid pre-treatment, the number of neurofibrillary tangles showing phosphorylated neurofilament protein immunoreactivity increased, with double labeling confirming that all of the tau-immunoreactive neurofibrillary tangles were also immunoreactive for phosphorylated neurofilament proteins. Immunoblotting demonstrated that there was a proportionately greater amount of the neurofilament triplet subunit proteins in hippocampal tissue from Alzheimer's disease cases as compared to controls. These results indicate that there are changes in the cytoskeleton of CA1 neurons associated with age which are likely to involve an increase in the level of neurofilament proteins and may be a predisposing factor contributing towards their high degree of vulnerability in degenerative conditions such as Alzheimer's disease. The cellular factors affecting hippocampal neurons during aging may be potentiated in Alzheimer's disease to result in even higher levels of intracellular neurofilament proteins and the progressive alterations of neurofilaments and other cytoskeletal proteins that finally results in neurofibrillary tangle formation and cellular degeneration.
Resumo:
We have synthesized a family of rheinhuprine hybrids to hit several key targets for Alzheimer"s disease. Biological screening performed in vitro and in Escherichia coli cells has shown that these hybrids exhibit potent inhibitory activities against human acetylcholinesterase butyrylcholinesterase, and BACE-1, dual Aβ42 and tau anti-aggregating activity, and brain permeability. Ex vivo studies with the leads (+)- and ()-7e in brain slices of C57bl6 mice have revealed that they efficiently protect against the Aβ-induced synaptic dysfunction , preventing the loss of synaptic proteins and/or have a positive effect on the induction of long term potentiation. In vivo studies in APP-PS1 transgenic mice treated i.p. for 4 weeks with (+)- and ()-7e have shown a central soluble Aβ lowering effect, accompanied by an increase in the levels of mature amyloid precursor protein (APP). Thus, (+)- and ()-7e emerge as very promising disease-modifying anti-Alzheimer drug candidates.