960 resultados para Alternative Food Cultures
Resumo:
The incidence of Amaranthaceae pollen allergy has increased due to the desertification occurring in many countries. In some regions of Spain, Salsola kali is the main cause of pollinosis, at almost the same level as olive and grass pollen. Sal k 1 - the sensitization marker of S. kali pollinosis - is used in clinical diagnosis, but is purified at a low yield from pollen. We aimed to produce a recombinant (r)Sal k 1 able to span the structural and immunological properties of the natural isoforms from pollen, and validate its potential use for diagnosis. METHODS: Specific cDNA was amplified by PCR, cloned into the pET41b vector and used to transform BL21 (DE3) Escherichia coli cells. Immunoblotting, ELISA, basophil activation and skin-prick tests were used to validate the recombinant protein against Sal k 1 isolated from pollen. Sera and blood cells from S. kali pollen-sensitized patients and specific monoclonal and polyclonal antisera were used. RESULTS: rSal k 1 was produced in bacteria with a yield of 7.5 mg/l of cell culture. The protein was purified to homogeneity and structural and immunologically validated against the natural form. rSal k 1 exhibited a higher IgE cross-reactivity with plant-derived food extracts such as peanut, almond or tomato than with pollen sources such as Platanus acerifolia and Oleaceae members. CONCLUSIONS: rSal k 1 expressed in bacteria retains intact structural and immunological properties in comparison to the pollen-derived allergen. It spans the immunological properties of most of the isoforms found in pollen, and it might substitute natural Sal k 1 in clinical diagnosis.
Resumo:
Toxoplasma gondii is a coccidian parasite with a global distribution. The definitive host is the cat (and other felids). All warm-blooded animals can act as intermediate hosts, including humans. Sexual reproduction (gametogony) takes place in the final host and oocysts are released in the environment, where they then sporulate to become infective. In intermediate hosts the cycle is extra-intestinal and results in the formation of tachyzoites and bradyzoites. Tachyzoites represent the invasive and proliferative stage and on entering a cell it multiplies asexually by endodyogeny. Bradyzoites within tissue cysts are the latent form. T. gondii is a food-borne parasite causing toxoplasmosis, which can occur in both animals and humans. Infection in humans is asymptomatic in more than 80% of cases in Europe and North-America. In the remaining cases patients present fever, cervical lymphadenopathy and other non-specific clinical signs. Nevertheless, toxoplasmosis is life threatening if it occurs in immunocompromised subjects. The main organs involved are brain (toxoplasmic encephalitis), heart (myocarditis), lungs (pulmonary toxoplasmosis), eyes, pancreas and parasite can be isolated from these tissues. Another aspect is congenital toxoplasmosis that may occur in pregnant women and the severity of the consequences depends on the stage of pregnancy when maternal infection occurs. Acute toxoplasmosis in developing foetuses may result in blindness, deformation, mental retardation or even death. The European Food Safety Authority (EFSA), in recent reports on zoonoses, highlighted that an increasing numbers of animals resulted infected with T. gondii in EU (reported by the European Member States for pigs, sheep, goats, hunted wild boar and hunted deer, in 2011 and 2012). In addition, high prevalence values have been detected in cats, cattle and dogs, as well as several other animal species, indicating the wide distribution of the parasite among different animal and wildlife species. The main route of transmission is consumption of food and water contaminated with sporulated oocysts. However, infection through the ingestion of meat contaminated with tissue cysts is frequent. Finally, although less frequent, other food products contaminated with tachyzoites such as milk, may also pose a risk. The importance of this parasite as a risk for human health was recently highlighted by EFSA’s opinion on modernization of meat inspection, where Toxoplasma gondii was identified as a relevant hazard to be addressed in revised meat inspection systems for pigs, sheep, goats, farmed wild boar and farmed deer (Call for proposals -GP/EFSA/BIOHAZ/2013/01). The risk of infection is more highly associated to animals reared outside, also in free-range or organic farms, where biohazard measure are less strict than in large scale, industrial farms. Here, animals are kept under strict biosecurity measures, including barriers, which inhibit access by cats, thus making soil contamination by oocysts nearly impossible. A growing demand by the consumer for organic products, coming from free-range livestock, in respect of animal-welfare, and the desire for the best quality of derived products, have all led to an increase in the farming of free-range animals. The risk of Toxoplasma gondii infection increases when animals have access to environment and the absence of data in Italy, together with need for in depth study of both the prevalence and genotypes of Toxoplasma gondii present in our country were the main reasons for the development of this thesis project. A total of 152 animals have been analyzed, including 21 free-range pigs (Suino Nero race), 24 transhumant Cornigliese sheep, 77 free-range chickens and 21 wild animals. Serology (on meat juice) and identification of T. gondii DNA through PCR was performed on all samples, except for wild animals (no serology). An in-vitro test was also applied with the aim to find an alternative and valid method to bioassay, actually the gold standard. Meat samples were digested and seeded onto Vero cells, checked every day and a RT-PCR protocol was used to determine an eventual increase in the amount of DNA, demonstrating the viability of the parasite. Several samples were alos genetically characterized using a PCR-RFLP protocol to define the major genotypes diffused in the geographical area studied. Within the context of a project promoted by Istituto Zooprofilattico of Pavia and Brescia (Italy), experimentally infected pigs were also analyzed. One of the aims was to verify if the production process of cured “Prosciutto di Parma” is able to kill the parasite. Our contribution included the digestion and seeding of homogenates on Vero cells and applying the Elisa test on meat juice. This thesis project has highlighted widespread diffusion of T. gondii in the geographical area taken into account. Pigs, sheep, chickens and wild animals showed high prevalence of infection. The data obtained with serology were 95.2%, 70.8%, 36.4%, respectively, indicating the spread of the parasite among numerous animal species. For wild animals, the average value of parasite infection determined through PCR was 44.8%. Meat juice serology appears to be a very useful, rapid and sensitive method for screening carcasses at slaughterhouse and for marketing “Toxo-free” meat. The results obtained on fresh pork meat (derived from experimentally infected pigs) before (on serum) and after (on meat juice) slaughter showed a good concordance. The free-range farming put in evidence a marked risk for meat-producing animals and as a consequence also for the consumer. Genotyping revealed the diffusion of Type-II and in a lower percentage of Type-III. In pigs is predominant the Type-II profile, while in wildlife is more diffused a Type-III and mixed profiles (mainly Type-II/III). The mixed genotypes (Type-II/III) could be explained by the presence of mixed infections. Free-range farming and the contact with wildlife could facilitate the spread of the parasite and the generation of new and atypical strains, with unknown consequences on human health. The curing process employed in this study appears to produce hams that do not pose a serious concern to human health and therefore could be marketed and consumed without significant health risk. Little is known about the diffusion and genotypes of T. gondii in wild animals; further studies on the way in which new and mixed genotypes may be introduced into the domestic cycle should be very interesting, also with the use of NGS techniques, more rapid and sensitive than PCR-RFLP. Furthermore wildlife can become a valuable indicator of environmental contamination with T. gondii oocysts. Other future perspectives regarding pigs include the expansion of the number of free-range animals and farms and for Cornigliese sheep the evaluation of other food products as raw milk and cheeses. It should be interesting to proceed with the validation of an ELISA test for infection in chickens, using both serum and meat juice on a larger number of animals and the same should be done also for wildlife (at the moment no ELISA tests are available and MAT is the reference method for them). Results related to Parma ham do not suggest a concerning risk for consumers. However, further studies are needed to complete the risk assessment and the analysis of other products cured using technological processes other than those investigated in the present study. For example, it could be interesting to analyze products such as salami, produced with pig meat all over the Italian country, with very different recipes, also in domestic and rural contexts, characterized by a very short period of curing (1 to 6 months). Toxoplasma gondii is one of the most diffuse food-borne parasites globally. Public health safety, improved animal production and protection of endangered livestock species are all important goals of research into reliable diagnostic tools for this infection. Future studies into the epidemiology, parasite survival and genotypes of T. gondii in meat producing animals should continue to be a research priority.
Resumo:
Antioxidant nano-biocomposites based on poly(ε-caprolactone) (PCL) were prepared by incorporating hydroxytyrosol (HT) and a commercial montmorillonite, Cloisite®30B (C30B), at different concentrations. A full structural, thermal, mechanical and functional characterization of the developed nano-biocomposites was carried out. The presence of the nanoclay and HT increased PCL crystallinity, whereas some decrease in thermal stability was observed. TEM analyses corroborated the good dispersion of C30B into the PCL macromolecular structure as already asserted by XRD tests, since no large aggregates were observed. A reduction in oxygen permeability and increase in elastic modulus were obtained for films containing the nanoclay. Finally, the presence of the nanoclay produced a decrease in the HT release from films due to some interaction between HT and C30B. Results proved that these nano-biocomposites can be an interesting and environmentally-friendly alternative for active food packaging applications with antioxidant performance.
Resumo:
Dielectric barrier discharge (DBD) air plasma is a novel technique for in-package decontamination of food, but it has not been yet applied to the packaging material. Characterization of commercial polylactic acid (PLA) films was done after in-package DBD plasma treatment at different voltages and treatment times to evaluate its suitability as food packaging material. DBD plasma increased the roughness of PLA film mainly at the site in contact with high voltage electrode at both the voltage levels of 70 and 80 kV. DBD plasma treatments did not induce any change in the glass transition temperature, but significant increase in the initial degradation temperature and maximum degradation temperature was observed. DBD plasma treatment did not adversely affect the oxygen and water vapor permeability of PLA. A very limited overall migration was observed in different food simulants and was much below the regulatory limits. Industrial relevance: In-package DBD plasma is a novel and innovative approach for the decontamination of foods with potential industrial application. This paper assesses the suitability of PLA as food packaging material for cold plasma treatment. It characterizes the effect of DBD plasma on the packaging material when used for in-package decontamination of food. The work described in this research offers a promising alternative to classical methods used in fruit and vegetable industries where in-package DBD plasma can serve as an effective decontamination process and avoids any post-process recontamination or hazards from the package itself.
Resumo:
Baculoviruses are a group of viruses that infect invertebrates and that have been used worldwide as a biopesticide against several insect pests of the Order Lepidoptera. In Brazil, the baculovirus Spodoptera frugiperda multicapsid nucleopolyhedrovirus (SfMNPV, Baculoviridae) has been used experimentally to control S. frugiperda (Lepidoptera: Noctuidae), an important insect pest of corn (maize) fields and other crops. Baculoviruses can be produced either in insect larvae or in cell culture bioreactors. A major limitation to the in vitro production of baculoviruses is the rapid generation of mutants when the virus undergoes passages in cell culture. In order to evaluate the potential of in vitro methods of producing SfMNPV on a large-scale, we have multiplied a Brazilian isolate of this virus in cell culture. Extensive formation of few polyhedra mutants was observed after only two passages in Sf9 cells.
Resumo:
Vaccinium myrtillus or bilberry fruit is a commonly used herbal product. The usual method of determining the anthocyanin content is a single-wavelength spectrophotometric assay. Using this method, anthocyanin levels of two extracts were found to be 25% as claimed by the manufacturers. When high-performance liquid chromatography (HPLC) was used, however, one extract was found to contain 9% anthocyanins probably not derived from V. myrtillus but from an adulterant. This adulterant was subsequently identified, using HPLC, mass spectroscopy, and nuclear magnetic resonance, as amaranth, that is, 3-hydroxy-4-[(4-sulfo-1-naphthalenyl)azo]-2,7-naphthalenedisulfonic acid trisodium saltsa synthetic dark red sulfonic acid based naphthylazo dye. As described in this study, if deliberate adulteration occurs in an extract, a single-wavelength spectrophotometric assay is inadequate to accurately determine the levels of compounds such as anthocyanins. Detection of deliberate adulteration in commercial samples thus requires the use of alternative, more sophisticated, methods of analysis such as HPLC with photodiode array detection as a minimum.
Resumo:
A new Thermal Mechanical Compression Test (TMCT) was applied for glass-rubber transition and melting analyses of food powders and crystals. The TMCT technique measures the phase change of a material based on mechanical changes during the transition. Whey, honey, and apple juice powders were analyzed for their glass-rubber transition temperatures. Sucrose and glucose monohydrate crystals were analyzed for their melting temperatures. The results were compared to the values obtained by conventional DSC and TMA techniques. The new TMCT technique provided the results that were very close to the conventional techniques. This technique can be an alternative to analyze glass-rubber transition of food, pharmaceutical, and chemical dry products.
Resumo:
Around the world, consumers and retailers of fresh produce are becoming more and more discerning about factors such as food safety and traceability, health, convenience and the sustainability of production systems, and in doing so they are changing the way in which fresh produce supply chains are configured and managed. When consumers demand fresh, safe, convenient, value-for-money produce, retailers in an increasingly competitive environment are attracted to those business models most capable of meeting these demands profitably. Traditional models are proving less and less able to deliver competitive advantage in such an environment. As a result, opportunistic, adversarial, price-based approaches to doing business between chain members are being replaced by approaches that are more strategic, collaborative and value-based. The shaping force behind this change is the need for producers, wholesalers, category managers, retailers and consumers to have more certainty about the performance of the supply chains upon which they rely. Certainty is generated through the supply chain's ability to create, deliver and share value. How to build supply chains that create, deliver and share value is arguably the single biggest challenge to the competitiveness of fresh produce firms, and therefore to the industries to which they belong.
Resumo:
This article proposes a framework of alternative international marketing strategies, based on the evaluation of intra- and inter-cultural behavioural homogeneity for market segmentation. The framework developed in this study provides a generic structure to behavioural homogeneity, proposing consumer involvement as a construct with unique predictive ability for international marketing strategy decisions. A model-based segmentation process, using structural equation models, is implemented to illustrate the application of the framework.
Resumo:
In the years 2004 and 2005, we collected samples of phytoplankton, zooplankton, and macroinvertebrates in an artificial small pond in Budapest (Hungary). We set up a simulation model predicting the abundances of the cyclopoids, Eudiaptomus zachariasi, and Ischnura pumilio by considering only temperature and the abundance of population of the previous day. Phytoplankton abundance was simulated by considering not only temperature but the abundances of the three mentioned groups. When we ran the model with the data series of internationally accepted climate change scenarios, the different outcomes were discussed. Comparative assessment of the alternative climate change scenarios was also carried out with statistical methods.
Resumo:
Lactic acid bacteria expolysaccharides (LAB-EPS), in particular those formed from sucrose have the potential to improve food and beverage rheology and enhance their sensory properties potentially replacing or reducing expensive hydrocolloids currently used as improvers in food and beverage industries. Addition of sucrose not only enables EPS formation but also affects organic acid formation, thus influencing the sensory properties of the resulting food/beverage products. The first part of the study the organoleptic modulation of barley malt derived wort fermented using in situ produced bacterial polysaccharides has been investigated. Weisella cibaria MG1 was capable to produce exopolysaccharides during sucrosesupplemented barley malt derived wort fermentation. Even though the strain dominated the (sucrose-supplemented) wort fermentation, it was found to produce EPS (14.4 g l-1) with lower efficiency than in SucMRS (34.6 g l-1). Higher maltose concentration in wort led to the increased formation of oligosaccharide (OS) at the expense of EPS. Additionally, small amounts of organic acids were formed and ethanol remained below 0.5% (v/v). W. cibaria MG1 fermented worts supplemented with 5 or 10% sucrose displayed a shear-thinning behaviour indicating the formation of polymers. This report showed how novel and nutritious LAB fermented wort-base beverage with prospects for further advancements can be formulated using tailored microbial cultures. In the next step, the impact of exopolysaccharide-producing Weissella cibaria MG1 on the ability to improve rheological properties of fermented plant-based milk substitute plant based soy and quinoa grain was evaluated. W. cibaria MG1 grew well in soy milk, exceeding a cell count of log 8 cfu/g within 6 h of fermentation. The presence of W. cibaria MG1 led to a decrease in gelation and fermentation time. EPS isolated from soy yoghurts supplemented with sucrose were higher in molecular weight (1.1 x 108 g/mol vs 6.6 x 107 g/mol), and resulted in reduced gel stiffness (190 ± 2.89 Pa vs 244 ± 15.9 Pa). Soy yoghurts showed typical biopolymer gels structure and the network structure changed to larger pores and less cross-linking in the presence of sucrose and increasing molecular weight of the EPS. In situ investigation of Weissella cibaria MG1 producing EPS on quinoa-based milk was performed. The production of quinoa milk, starting from wholemeal quinoa flour, was optimised to maximise EPS production. On doing that, enzymatic destructuration of protein and carbohydrate components of quinoa milk was successfully achieved applying alpha-amylase and proteases treatments. Fermented wholemeal quinoa milk using Weissella cibaria MG1 showed high viable cell counts (>109 cfu/mL), a pH of 5.16, and significantly higher water holding capacity (WHC, 100 %), viscosity (> 0. 5 Pa s) and exopolysaccharide (EPS) amount (40 mg/L) than the chemically acidified control. High EPS (dextran) concentration in quinoa milk caused earlier aggregation because more EPS occupy more space, and the chenopodin were forced to interact with each other. Direct observation of microstructure in fermented quinoa milk indicated that the network structures of EPS-protein could improve the texture of fermented quinoa milk. Overall, Weissella cibaria MG1 showed favorable technology properties and great potential for further possible application in the development of high viscosity fermented quinoa milk. The last part of the study investigate the ex-situ LAB-EPS (dextran) application compared to other hydrocolloids as a novel food ingredient to compensate for low protein in biscuit and wholemeal wheat flour. Three hydrocolloids, xanthan gum, dextran and hydroxypropyl methylcellulose, were incorporated into bread recipes based on high-protein flours, low-protein flours and coarse wholemeal flour. Hydrocolloid levels of 0–5 % (flour basis) were used in bread recipes to test the water absorption. The quality parameters of dough (farinograph, extensograph, rheofermentometre) and bread (specific volume, crumb structure and staling profile) were determined. Results showed that xanthan had negative impact on the dough and bread quality characteristics. HPMC and dextran generally improved dough and bread quality and showed dosage dependence. Volume of low-protein flour breads were significantly improved by incorporation of 0.5 % of the latter two hydrocolloids. However, dextran outperformed HPMC regarding initial bread hardness and staling shelf life regardless the flour applied in the formulation.
Resumo:
Currently, there is increasing use of nanomaterials in the food industry thanks to the many advantages offered and make the products that contain them more competitive in the market. Their physicochemical properties often differ from those of bulk materials, which require specialized risk assessment. This should cover the risks to the health of workers and consumers as well as possible environmental risks. The risk assessment methods must go updating due to more widespread use of nanomaterials, especially now that are making their way down to consumer products. Today there is no specific legislation for nanomaterials, but there are several european dispositions and regulations that include them. This review gives an overview of the risk assessment and the existing current legislation regarding the use of nanotechnology in the food industry.
Resumo:
Research in biosensing approaches as alternative techniques for food diagnostics for the detection of chemical contaminants and foodborne pathogens has increased over the last twenty years. The key component of such tests is the biorecognition element whereby polyclonal or monoclonal antibodies still dominate the market. Traditionally the screening of sera or cell culture media for the selection of polyclonal or monoclonal candidate antibodies respectively has been performed by enzyme immunoassays. For niche toxin compounds, enzyme immunoassays can be expensive and/or prohibitive methodologies for antibody production due to limitations in toxin supply for conjugate production. Automated, self-regenerating, chip-based biosensors proven in food diagnostics may be utilised as rapid screening tools for antibody candidate selection. This work describes the use of both single channel and multi-channel surface plasmon resonance (SPR) biosensors for the selection and characterisation of antibodies, and their evaluation in shellfish tissue as standard techniques for the detection of domoic acid, as a model toxin compound. The key advantages in the use of these biosensor techniques for screening hybridomas in monoclonal antibody production were the real time observation of molecular interaction and rapid turnaround time in analysis compared to enzyme immunoassays. The multichannel prototype instrument was superior with 96 analyses completed in 2h compared to 12h for the single channel and over 24h for the ELISA immunoassay. Antibodies of high sensitivity, IC50's ranging from 4.8 to 6.9ng/mL for monoclonal and 2.3-6.0ng/mL for polyclonal, for the detection of domoic acid in a 1min analysis time were selected. Although there is a progression for biosensor technology towards low cost, multiplexed portable diagnostics for the food industry, there remains a place for laboratory-based SPR instrumentation for antibody development for food diagnostics as shown herein.