916 resultados para All plastic device
Resumo:
Improving the charge capacity, electrochemical reversibility and stability of anode materials are main challenges for the development of Ni-based rechargeable batteries and devices. The combination of cobalt, as additive, and electrode material nanostructuration revealed a very promising approach for this purpose. The new alpha-NiCo mixed hydroxide based electrodes exhibited high specific charge/discharge capacity (355-714 C g(-1)) and outstanding structural stability, withstanding up to 700 redox cycles without any significant phase transformation, as confirmed by cyclic voltammetry, electrochemical quartz crystal microbalance and X-ray diffractometry. In short, the nanostructured alpha-NiCo mixed hydroxide materials possess superior electrochemical properties and stability, being strong candidates for application in high performance batteries and devices. (C) 2012 Elsevier B.V. All rights reserved.
Nitric Oxide in the Exhaled Breath Condensate of Healthy Volunteers Collected With a Reusable Device
Resumo:
Background: The analysis of exhaled breath condensate (EBC) is a non-invasive technique that enables the determination of several volatile and nonvolatile substances produced in the respiratory tract, whose measurement may be useful for the diagnosis and monitoring of several respiratory diseases. Objective: The aim of this study was to produce a low-cost reusable device in order to sample exhaled breath condensate in healthy adult volunteers, and to determine the concentration of nitric oxide in the sample collected. Material and methods: The apparatus was made with a U-shaped tube of borosilicate glass. The tube was placed in a container with ice, and unidirectional respiratory valves were fitted to the distal end. Afterwards, nitric oxide was measured in the exhaled breath condensate (EBC) by chemiluminescence. Results: The total cost of the device was $120.20. EBC samples were obtained from 116 volunteers of both sexes, aged between 20 and 70. The mean volume of exhaled breath condensate collected during 10 minutes was 1.0 +/- 0.6 mL, and the mean level of nitric oxide was 12.99 +/- 14.38 mu M (median 8.72 mu M). There was no correlation between the nitric oxide levels in the exhaled breath condensate and age or gender. Conclusion: We demonstrate that it is possible to fabricate a low-cost, efficient, reusable device in order to collect and determine nitric oxide levels in EBC. We have identified no correlation between the nitric oxide levels present in the EBC obtained with this method with either age or sex. (C) 2011 SEPAR. Published by Elsevier Espana, S.L. All rights reserved.
Resumo:
Abstract Background High astigmatisms are usually induced during corneal suturing subsequent to tissue transplantation or any other surgery which involves corneal suturing. One of the reasons is that the procedure is intimately dependent on the surgeon's skill for suturing identical stitches. In order to evaluate the influence of the irregularity on suturing for the residual astigmatism, a prototype for ophthalmic surgical support has been developed. The final intention of this prototype is to be an evaluation tool for guided suture and as an outcome diminish the postoperative astigmatism. Methods The system consists of hand held ring with 36 infrared LEDs, that is to be projected onto the lachrymal film of the cornea. The image is reflected back through the optics of the ocular microscope and its distortion from the original circular shape is evaluated by developed software. It provides keratometric and circularity measurements during surgery in order to guide the surgeon for uniformity in suturing. Results The system is able to provide up to 23D of astigmatism (32D - 55D range) and is ± 0.25D accurate. It has been tested in 14 volunteer patients intraoperative and has been compared to a commercial keratometer Nidek Oculus Hand-held corneal topographer. The correlation factors are 0.92 for the astigmatism and 0.97 for the associated axis. Conclusion The system is potentially efficient for guiding the surgeon on uniformity of suturing, presenting preliminary data indicating an important decrease on the residual astigmatism, from an average of 8D - for patients not submitted to the prototype guidance - to 1.4D - for patients who have actually been submitted to the prototype guidance - after the first 24 hours post-surgery and in the subsequent weeks. It also indicates that the surgeon should achieve circularity greater or equal to 98% in order to avoid postoperative astigmatisms over 1D. Trial Registration Trial registration number: CAAE - 0212.0.004.000-09.
Resumo:
This work proposes a system for classification of industrial steel pieces by means of magnetic nondestructive device. The proposed classification system presents two main stages, online system stage and off-line system stage. In online stage, the system classifies inputs and saves misclassification information in order to perform posterior analyses. In the off-line optimization stage, the topology of a Probabilistic Neural Network is optimized by a Feature Selection algorithm combined with the Probabilistic Neural Network to increase the classification rate. The proposed Feature Selection algorithm searches for the signal spectrogram by combining three basic elements: a Sequential Forward Selection algorithm, a Feature Cluster Grow algorithm with classification rate gradient analysis and a Sequential Backward Selection. Also, a trash-data recycling algorithm is proposed to obtain the optimal feedback samples selected from the misclassified ones.
Resumo:
Conjugated polymers have attracted tremendous academical and industrial research interest over the past decades due to the appealing advantages that organic / polymeric materials offer for electronic applications and devices such as organic light emitting diodes (OLED), organic field effect transistors (OFET), organic solar cells (OSC), photodiodes and plastic lasers. The optimization of organic materials for applications in optoelectronic devices requires detailed knowledge of their photophysical properties, for instance energy levels of excited singlet and triplet states, excited state decay mechanisms and charge carrier mobilities. In the present work a variety of different conjugated (co)polymers, mainly polyspirobifluorene- and polyfluorene-type materials, was investigated using time-resolved photoluminescence spectroscopy in the picosecond to second time domain to study their elementary photophysical properties and to get a deeper insight into structure-property relationships. The experiments cover fluorescence spectroscopy using Streak Camera techniques as well as time-delayed gated detection techniques for the investigation of delayed fluorescence and phosphorescence. All measurements were performed on the solid state, i.e. thin polymer films and on diluted solutions. Starting from the elementary photophysical properties of conjugated polymers the experiments were extended to studies of singlet and triplet energy transfer processes in polymer blends, polymer-triplet emitter blends and copolymers. The phenomenon of photonenergy upconversion was investigated in blue light-emitting polymer matrices doped with metallated porphyrin derivatives supposing an bimolecular annihilation upconversion mechanism which could be experimentally verified on a series of copolymers. This mechanism allows for more efficient photonenergy upconversion than previously reported for polyfluorene derivatives. In addition to the above described spectroscopical experiments, amplified spontaneous emission (ASE) in thin film polymer waveguides was studied employing a fully-arylated poly(indenofluorene) as the gain medium. It was found that the material exhibits a very low threshold value for amplification of blue light combined with an excellent oxidative stability, which makes it interesting as active material for organic solid state lasers. Apart from spectroscopical experiments, transient photocurrent measurements on conjugated polymers were performed as well to elucidate the charge carrier mobility in the solid state, which is an important material parameter for device applications. A modified time-of-flight (TOF) technique using a charge carrier generation layer allowed to study hole transport in a series of spirobifluorene copolymers to unravel the structure-mobility relationship by comparison with the homopolymer. Not only the charge carrier mobility could be determined for the series of polymers but also field- and temperature-dependent measurements analyzed in the framework of the Gaussian disorder model showed that results coincide very well with the predictions of the model. Thus, the validity of the disorder concept for charge carrier transport in amorphous glassy materials could be verified for the investigated series of copolymers.
Resumo:
La tesi tratta in modo approfondito il concetto di wearable device, i suoi utilizzi e l'esperienza d'uso da parte dell'utente soffermando l'attenzione sui principali dispositivi presenti in commercio e non. Nello specifico vengono trattati smart watch, smart glass e visori per la realta virtuale. Nella sezione conclusiva vengono trattati gli standard ISO relativi all'ergonomia degli utenti con i computer, descrivendo nel dettaglio le direttive che sono presentate nello standard ISO 9241:210-2010.
Resumo:
OBJECTIVES: The aim of this randomised clinical trial was to investigate if a laser fluorescence device is able to discriminate between sound and carious approximal sites and between enamel and dentinal lesions, as well as to find appropriate cut-off values. METHODS: One hundred and seventeen sound or uncavitated carious sites in permanent molars were visually and radiographically examined, then either opened or not, after which their laser fluorescence was measured. Forty-three lesions were opened, the caries removed and the clinically identified caries depths were registered in addition to the radiographical scoring. Seventy-four sites were radiographically deemed sound or had enamel caries and were not opened. Here, the radiographical scorings were registered. RESULTS: Taking the radiographic scoring as gold standard for all investigated approximal sites, sound sites (D(0), n=40) showed significantly lower laser fluorescence measurements than carious sites (D(1-4), n=77) (Mann-Whitney test, P<0.025) suggesting a cut-off at 7 (sensitivity=0.68, specificity=0.7). Comparing measurements of D(0-2) (n=74) and D(3,4) (n=43), the results were also different by a statistically significant amount (P<0.025) and the cut-off calculated to be 16 (sensitivity=0.6, specificity=0.84). A fair positive correlation between laser fluorescence values and radiographical scoring was found (rho=+0.47, P<0.01). Analysing the 43 opened lesions with their clinically found lesion depths as gold standard, there was a fair positive correlation to the laser fluorescence values (rho=+0.34, P=0.03) and a moderately strong correlation to the radiographic scoring (rho=+0.67, P<0.01). CONCLUSION: The device may be an adjunct tool in the approximal detection of caries along with established procedures.
Resumo:
As lipofilling of the female breast is becoming more popular in plastic surgery, the use of MRI to assess breast volume has been employed to control postoperative results. Therefore, we sought to evaluate the accuracy of magnetic resonance imaging (MRI)-based breast volumetry software tools by comparing the measurements of silicone implant augmented breasts with the actual implant volume specified by the manufacturer. MRI-based volume analysis was performed in eight bilaterally augmented patients (46 ± 9 years) with three different software programs (Brainlab© I plan 2.6 neuronavigation software; mass analysis, version 5.3, Medis©; and OsiriX© v.3.0.2. 32-bit). The implant volumes analysed by the BrainLab© software had a mean deviation of 2.2 ± 1.7% (r?=?0.99) relative to the implanted prosthesis. OsiriX© software analysis resulted in a mean deviation of 2.8 ± 3.0% (r?=?0.99) and the Medis© software had a mean deviation of 3.1 ± 3.0% (r?=?0.99). Overall, the volumes of all analysed breast implants correlated very well with the real implant volumes. Processing time was 10 min per breast with each system and 30 s (OsiriX©) to 5 min (BrainLab© and Medis©) per silicone implant. MRI-based volumetry is a powerful tool to calculate both native breast and silicone implant volume in situ. All software solutions performed well and the measurements were close to the actual implant sizes. The use of MRI breast volumetry may be helpful in: (1) planning reconstructive and aesthetic surgery of asymmetric breasts, (2) calculating implant size in patients with missing documentation of a previously implanted device and (3) assessing post-operative results objectively.
Resumo:
The Gracias Laboratory at Johns Hopkins University has developed microgrippers which utilize chemically-actuated joints to be used in micro-surgery. These grippers, however, take up to thirty minutes to close fully when activated biochemicals in the human body. This is very problematic and could limit the use of the devices in surgery. It is the goal of this research to develop a gripper that uses theGracias Laboratory's existing joints in conjunction with mechanical components to decrease the closing time. The purpose of including the mechanical components is to induce a state of instability at which time a small perturbation would cause the joint to close fully.The main concept of the research was to use the lateral buckling of a triangular gripper geometry and use a toggle mechanism to decrease the closure time of the device. This would create a snap-action device mimicking the quick closure of a Venus flytrap. All developed geometries were tested using finite element analysis to determine ifloading conditions produced the desired buckled shape. This research examines lateral buckling on the micro-scale and the possibility ofusing this phenomenon in a micro-gripper. Although a final geometry with the required deformed shaped was not found, this document contains suggestions for future geometries that may produce the correct deformed shape. It was determined through this work that in order to obtain the desired deformed shape, polymeric sections need to be added to the geometry. This simplifies the analysis and allows the triangular structure to buckle in the appropriate way due to the added joints. Future work for this project will be completed by undergraduate students at Bucknell University. Fabrication and testing of devices will be done at Johns Hopkins University in the Gracias Laboratory.
Resumo:
This project addresses the unreliability of operating system code, in particular in device drivers. Device driver software is the interface between the operating system and the device's hardware. Device drivers are written in low level code, making them difficult to understand. Almost all device drivers are written in the programming language C which allows for direct manipulation of memory. Due to the complexity of manual movement of data, most mistakes in operating systems occur in device driver code. The programming language Clay can be used to check device driver code at compile-time. Clay does most of its error checking statically to minimize the overhead of run-time checks in order to stay competitive with C's performance time. The Clay compiler can detect a lot more types of errors than the C compiler like buffer overflows, kernel stack overflows, NULL pointer uses, freed memory uses, and aliasing errors. Clay code that successfully compiles is guaranteed to run without failing on errors that Clay can detect. Even though C is unsafe, currently most device drivers are written in it. Not only are device drivers the part of the operating system most likely to fail, they also are the largest part of the operating system. As rewriting every existing device driver in Clay by hand would be impractical, this thesis is part of a project to automate translation of existing drivers from C to Clay. Although C and Clay both allow low level manipulation of data and fill the same niche for developing low level code, they have different syntax, type systems, and paradigms. This paper explores how C can be translated into Clay. It identifies what part of C device drivers cannot be translated into Clay and what information drivers in Clay will require that C cannot provide. It also explains how these translations will occur by explaining how each C structure is represented in the compiler and how these structures are changed to represent a Clay structure.
Resumo:
In excisional body-contouring surgery the surgeon is often confronted with time-consuming closure of long wounds. Recently, a new combination of a self-adhering mesh together with a liquid 2-octyl cyanoacrylate adhesive (Prineo™; Ethicon, Inc., Somerville, NJ, USA) has been introduced to replace intracutaneous running suture.
Resumo:
The architecture of European Plastic Surgery was published in 1996 [Nicolai JPA, Scuderi N. Plastic surgical Europe in an organogram. Eur J Plast Surg 1996; 19: 253-256.] It is the objective of this paper to update information of that article. Continuing medical education (CME), science, training, examination, quality assurance and relations with the European Commission and Parliament all are aspects covered by the organisations to be discussed.
Resumo:
OBJECTIVE: The standard heart-lung machine is a major trigger of systemic inflammatory response and the morbidity attributed to conventional extracorporeal circulation (CECC) is still significant. Reduction of blood-artificial surface contact and reduction of priming volume are principal aims in minimized extracorporeal circulation (MECC) cardiopulmonary bypass systems. The aim of this paper is to give an overview of the literature and to present our experience with the MECC-smart suction system. METHODS AND RESULTS: At our institution, 1799 patients underwent isolated coronary artery bypass grafting (CABG) surgery, 1372 with a MECC-smart suction system and 427 with CECC. All in-hospital data were assessed and the results were compared between the 2 groups. Patient characteristics and the distribution of EuroSCORE risk profile in our collective were similar between both groups. Average age in the MECC collective was 67.5 +/- 11.4 years and average EuroSCORE was 5.0 +/- 1.5. Average number of distal anastomoses was similar to the average number encountered in patients undergoing CABG surgery with CECC (3.3 +/- 1.0 for MECC versus 3.2 +/- 1.1 for CECC; P = ns). Myocardial protection is superior in MECC patients with lower postoperative maximal cTnI values (11.0 +/- 10.8 micromol/L for MECC versus 24.7 +/- 25.3 micromol/L for CECC; P < .05). Postoperative recovery was faster in patients operated on with the MECC-smart suction system and discharge from the hospital was earlier than for CECC patients (7.4 +/- 1.9 days for MECC versus 8.8 +/- 3.8 days for CECC; P < .05). CONCLUSIONS: The MECC-smart suction system is a safe perfusion technique for CABG surgery. In patients operated on with this system, the clinical outcome seems to be better than in patients operated on with CECC. This promising and less damaging perfusion technology has the potential to replace CECC systems in CABG surgery.
Resumo:
PURPOSE: To investigate the impact of filter design on blood flow impairment in the internal carotid artery (ICA) among patients undergoing carotid artery stenting (CAS) using filter-type emboli protection devices (EPD). METHODS: Between July 2003 and March 2007, 115 filter-protected CAS procedures were performed at an academic institution in 107 consecutive patients (78 men; mean age 68 years, range 38-87). The Angioguard, FilterWire EZ, and Spider filters were used in 68 (59%), 32 (28%), and 15 (13%) of cases, respectively. Patient characteristics, procedural and angiographic data, and outcomes were prospectively entered into an electronic database and reviewed retrospectively along with all angiograms. RESULTS: Flow impairment while the filter was in place was observed in 25 (22%) cases. The presumptive reason of flow impairment was filter obstruction in 21 (18%) instances and flow-limiting spasm at the level of the filter in 4 (4%). In all cases, flow was restored after retrieval of the filter. Flow obstruction in the ICA occurred more frequently with Angioguard (22/68; 32.3%) than with FilterWire EZ (2/32; 6.2%) or Spider (1/15; 6.7%; p = 0.004). No flow occurred in 13 (19%) procedures, all of them protected with Angioguard; no patient treated with other devices experienced this event (p = 0.007). Two (8.0%) strokes occurred in procedures associated with flow impairment, while 1 (1.1%) event was observed in the presence of preserved flow throughout the intervention (p = 0.11). CONCLUSION: Flow impairment in the ICA during filter-based CAS is common and related to the type of filter used.
Resumo:
The goal of this study was to assess the feasibility, safety and success of a system which uses radiofrequency energy (RFE) rather than a device for percutaneous closure of patent foramen ovale (PFO). METHODS: Sixteen patients (10 men, 6 women, mean age 50 years) were included in the study. All of them had a proven PFO with documented right-to-left shunt (RLS) after Valsalva manoeuvre (VM) during transoesophageal echocardiography (TEE). The patients had an average PFO diameter of 6 +/- 2 mm at TEE and an average of 23 +/- 4 microembolic signals (MES) in power M-mode transcranial Doppler sonography (pm-TCD), measured over the middle cerebral artery. An atrial septal aneurysm (ASA) was present in 7 patients (44%). Balloon measurement, performed in all patients, revealed a stretched PFO diameter of 8 +/- 3 mm. In 2 patients (stretched diameter 11 and 14 mm respectively, both with ASA >10 mm), radiofrequency was not applied (PFO too large) and the PFO was closed with an Amplatzer PFO occluder instead. A 6-month follow-up TEE was performed in all patients. RESULTS: There were no serious adverse events during the procedure or at follow-up (12 months average). TEE 6 months after the first RFE procedure showed complete closure of the PFO in 50% of the patients (7/14). Closure appeared to be influenced by PFO diameter, complete closure being achieved in 89% (7/8) with a balloon-stretched diameter < or =7 mm but in none of the patients >7 mm. Only one of the complete closure patients had an ASA. Of the remainder, 4 (29%) had an ASA. Although the PFO was not completely closed in this group, some reduction in the diameter of the PFO and in MES was documented by TEE and pm-TCD with VM. Five of the 7 residual shunt patients received an Amplatzer PFO occluder. Except for one patient with a minimal residual shunt, all showed complete closure of PFO at 6-month follow-up TEE and pm-TCD with VM. The other two refused a closure device. CONCLUSIONS: The results confirm that radiofrequency closure of the PFO is safe albeit less efficacious and more complex than device closure. The technique in its current state should not be attempted in patients with a balloon-stretched PFO diameter >7 mm and an ASA.