860 resultados para Algoritmos de estimação-maximização
Resumo:
Wireless sensors and actuators Networks specified by IEEE 802.15.4, are becoming increasingly being applied to instrumentation, as in instrumentation of oil wells with completion Plunger Lift type. Due to specific characteristics of the environment being installed, it s find the risk of compromising network security, and presenting several attack scenarios and the potential damage from them. It`s found the need for a more detailed security study of these networks, which calls for use of encryption algorithms, like AES-128 bits and RC6. So then it was implement the algorithms RC6 and AES-128, in an 8 bits microcontroller, and study its performance characteristics, critical for embedded applications. From these results it was developed a Hybrid Algorithm Cryptographic, ACH, which showed intermediate characteristics between the AES and RC6, more appropriate for use in applications with limitations of power consumption and memory. Also was present a comparative study of quality of security among the three algorithms, proving ACH cryptographic capability.
Resumo:
This work develops a methodology for defining the maximum active power being injected into predefined nodes in the studied distribution networks, considering the possibility of multiple accesses of generating units. The definition of these maximum values is obtained from an optimization study, in which further losses should not exceed those of the base case, i.e., without the presence of distributed generation. The restrictions on the loading of the branches and voltages of the system are respected. To face the problem it is proposed an algorithm, which is based on the numerical method called particle swarm optimization, applied to the study of AC conventional load flow and optimal load flow for maximizing the penetration of distributed generation. Alternatively, the Newton-Raphson method was incorporated to resolution of the load flow. The computer program is performed with the SCILAB software. The proposed algorithm is tested with the data from the IEEE network with 14 nodes and from another network, this one from the Rio Grande do Norte State, at a high voltage (69 kV), with 25 nodes. The algorithm defines allowed values of nominal active power of distributed generation, in percentage terms relative to the demand of the network, from reference values
Resumo:
A hierarchical fuzzy control scheme is applied to improve vibration suppression by using an electro-mechanical system based on the lever principle. The hierarchical intelligent controller consists of a hierarchical fuzzy supervisor, one fuzzy controller and one robust controller. The supervisor combines controllers output signal to generate the control signal that will be applied on the plant. The objective is to improve the performance of the electromechanical system, considering that the supervisor could take advantage of the different techniques based controllers. The robust controller design is based on a linear mathematical model. Genetic algorithms are used on the fuzzy controller and the supervisor tuning, which are based on non-linear mathematical model. In order to attest the efficiency of the hierarchical fuzzy control scheme, digital simulations were employed. Some comparisons involving the optimized hierarchical controller and the non-optimized hierarchical controller will be made to prove the efficiency of the genetic algorithms and the advantages of its use
Resumo:
This dissertation presents a new proposal for the Direction of Arrival (DOA) detection problem for more than one signal inciding simultaneously on an antennas array with linear or planar geometry by using intelligent algorithms. The DOA estimator is developed by using techniques of Conventional Beam-forming (CBF), Blind Source Separation (BSS), and the neural estimator MRBF (Modular Structure of Radial Basis Functions). The developed MRBF estimator has its capacity extended due to the interaction with the BSS technique. The BSS makes an estimation of the steering vectors of the multiple plane waves that reach the array in the same frequency, that means, obtains to separate mixed signals without information a priori. The technique developed in this work makes possible to identify the multiple sources directions and to identify and to exclude interference sources
Resumo:
The pattern classification is one of the machine learning subareas that has the most outstanding. Among the various approaches to solve pattern classification problems, the Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the solution by solving a set of linear equations instead of quadratic programming implemented in SVM. The LS-SVMs provide some free parameters that have to be correctly chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high performance, lots of tools have been developed to improve them, mainly the development of new classifying methods and the employment of ensembles, in other words, a combination of several classifiers. In this work, our proposal is to use an ensemble and a Genetic Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM classification. In the construction of this ensemble, we use a random selection of attributes of the original problem, which it splits the original problem into smaller ones where each classifier will act. So, we apply a genetic algorithm to find effective values of the LS-SVM parameters and also to find a weight vector, measuring the importance of each machine in the final classification. Finally, the final classification is obtained by a linear combination of the decision values of the LS-SVMs with the weight vector. We used several classification problems, taken as benchmarks to evaluate the performance of the algorithm and compared the results with other classifiers
Resumo:
A challenge that remains in the robotics field is how to make a robot to react in real time to visual stimulus. Traditional computer vision algorithms used to overcome this problem are still very expensive taking too long when using common computer processors. Very simple algorithms like image filtering or even mathematical morphology operations may take too long. Researchers have implemented image processing algorithms in high parallelism hardware devices in order to cut down the time spent in the algorithms processing, with good results. By using hardware implemented image processing techniques and a platform oriented system that uses the Nios II Processor we propose an approach that uses the hardware processing and event based programming to simplify the vision based systems while at the same time accelerating some parts of the used algorithms
Resumo:
This work proposes a new technique for phasor estimation applied in microprocessor numerical relays for distance protection of transmission lines, based on the recursive least squares method and called least squares modified random walking. The phasor estimation methods have compromised their performance, mainly due to the DC exponential decaying component present in fault currents. In order to reduce the influence of the DC component, a Morphological Filter (FM) was added to the method of least squares and previously applied to the process of phasor estimation. The presented method is implemented in MATLABr and its performance is compared to one-cycle Fourier technique and conventional phasor estimation, which was also based on least squares algorithm. The methods based on least squares technique used for comparison with the proposed method were: forgetting factor recursive, covariance resetting and random walking. The techniques performance analysis were carried out by means of signals synthetic and signals provided of simulations on the Alternative Transient Program (ATP). When compared to other phasor estimation methods, the proposed method showed satisfactory results, when it comes to the estimation speed, the steady state oscillation and the overshoot. Then, the presented method performance was analyzed by means of variations in the fault parameters (resistance, distance, angle of incidence and type of fault). Through this study, the results did not showed significant variations in method performance. Besides, the apparent impedance trajectory and estimated distance of the fault were analysed, and the presented method showed better results in comparison to one-cycle Fourier algorithm
Resumo:
In this work, we study and compare two percolation algorithms, one of then elaborated by Elias, and the other one by Newman and Ziff, using theorical tools of algorithms complexity and another algorithm that makes an experimental comparation. This work is divided in three chapters. The first one approaches some necessary definitions and theorems to a more formal mathematical study of percolation. The second presents technics that were used for the estimative calculation of the algorithms complexity, are they: worse case, better case e average case. We use the technique of the worse case to estimate the complexity of both algorithms and thus we can compare them. The last chapter shows several characteristics of each one of the algorithms and through the theoretical estimate of the complexity and the comparison between the execution time of the most important part of each one, we can compare these important algorithms that simulate the percolation.
Resumo:
We presented in this work two methods of estimation for accelerated failure time models with random e_ects to process grouped survival data. The _rst method, which is implemented in software SAS, by NLMIXED procedure, uses an adapted Gauss-Hermite quadrature to determine marginalized likelihood. The second method, implemented in the free software R, is based on the method of penalized likelihood to estimate the parameters of the model. In the _rst case we describe the main theoretical aspects and, in the second, we briey presented the approach adopted with a simulation study to investigate the performance of the method. We realized implement the models using actual data on the time of operation of oil wells from the Potiguar Basin (RN / CE).
Resumo:
In Survival Analysis, long duration models allow for the estimation of the healing fraction, which represents a portion of the population immune to the event of interest. Here we address classical and Bayesian estimation based on mixture models and promotion time models, using different distributions (exponential, Weibull and Pareto) to model failure time. The database used to illustrate the implementations is described in Kersey et al. (1987) and it consists of a group of leukemia patients who underwent a certain type of transplant. The specific implementations used were numeric optimization by BFGS as implemented in R (base::optim), Laplace approximation (own implementation) and Gibbs sampling as implemented in Winbugs. We describe the main features of the models used, the estimation methods and the computational aspects. We also discuss how different prior information can affect the Bayesian estimates
Resumo:
Universidade Federal do Rio Grande do Norte
Resumo:
The main specie of marine shrimp raised at Brazil and in the world is Litopenaeus vannamei, which had arrived in Brazil in the `80s. However, the entry of infectious myonecrosis virus (IMNV), causing the infectious myonecrosis disease in marine shrimps, brought economic losses to the national shrimp farming, with up to 70% of mortality in the shrimp production. In this way, the objective was to evaluate the survival of shrimps Litopenaeus vannamei infected with IMNV using the non parametric estimator of Kaplan-Meier and a model of frailty for grouped data. It were conducted three tests of viral challenges lasting 20 days each, at different periods of the year, keeping the parameters of pH, temperature, oxygen and ammonia monitored daily. It was evaluated 60 full-sib families of L. vannamei infected by IMNV in each viral challenge. The confirmation of the infection by IMNV was performed using the technique of PCR in real time through Sybr Green dye. Using the Kaplan-Meier estimator it was possible to detect significant differences (p <0.0001) between the survival curves of families and tanks and also in the joint analysis between viral challenges. It were estimated in each challenge, genetic parameters such as genetic value of family, it`s respective rate risk (frailty), and heritability in the logarithmic scale through the frailty model for grouped data. The heritability estimates were respectively 0.59; 0.36; and 0.59 in the viral challenges 1; 2; and 3, and it was also possible to identify families that have lower and higher rates of risk for the disease. These results can be used for selecting families more resistant to the IMNV infection and to include characteristic of disease resistance in L. vannamei into the genetic improvement programs
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Clustering data is a very important task in data mining, image processing and pattern recognition problems. One of the most popular clustering algorithms is the Fuzzy C-Means (FCM). This thesis proposes to implement a new way of calculating the cluster centers in the procedure of FCM algorithm which are called ckMeans, and in some variants of FCM, in particular, here we apply it for those variants that use other distances. The goal of this change is to reduce the number of iterations and processing time of these algorithms without affecting the quality of the partition, or even to improve the number of correct classifications in some cases. Also, we developed an algorithm based on ckMeans to manipulate interval data considering interval membership degrees. This algorithm allows the representation of data without converting interval data into punctual ones, as it happens to other extensions of FCM that deal with interval data. In order to validate the proposed methodologies it was made a comparison between a clustering for ckMeans, K-Means and FCM algorithms (since the algorithm proposed in this paper to calculate the centers is similar to the K-Means) considering three different distances. We used several known databases. In this case, the results of Interval ckMeans were compared with the results of other clustering algorithms when applied to an interval database with minimum and maximum temperature of the month for a given year, referring to 37 cities distributed across continents
Resumo:
The camera motion estimation represents one of the fundamental problems in Computer Vision and it may be solved by several methods. Preemptive RANSAC is one of them, which in spite of its robustness and speed possesses a lack of flexibility related to the requirements of applications and hardware platforms using it. In this work, we propose an improvement to the structure of Preemptive RANSAC in order to overcome such limitations and make it feasible to execute on devices with heterogeneous resources (specially low budget systems) under tighter time and accuracy constraints. We derived a function called BRUMA from Preemptive RANSAC, which is able to generalize several preemption schemes, allowing previously fixed parameters (block size and elimination factor) to be changed according the applications constraints. We also propose the Generalized Preemptive RANSAC method, which allows to determine the maximum number of hipotheses an algorithm may generate. The experiments performed show the superiority of our method in the expected scenarios. Moreover, additional experiments show that the multimethod hypotheses generation achieved more robust results related to the variability in the set of evaluated motion directions