996 resultados para Air filters.
Resumo:
Background Recovery strategies are often usedwith the intention of preventing orminimisingmuscle soreness after exercise. Whole-body cryotherapy, which involves a single or repeated exposure(s) to extremely cold dry air (below -100 °C) in a specialised chamber or cabin for two to four minutes per exposure, is currently being advocated as an effective intervention to reduce muscle soreness after exercise. Objectives To assess the effects (benefits and harms) of whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults. Search methods We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CINAHL, the British Nursing Index and the Physiotherapy Evidence Database. We also searched the reference lists of articles, trial registers and conference proceedings, handsearched journals and contacted experts. The searches were run in August 2015. Selection criteria We aimed to include randomised and quasi-randomised trials that compared the use of whole-body cryotherapy (WBC) versus a passive or control intervention (rest, no treatment or placebo treatment) or active interventions including cold or contrast water immersion, active recovery and infrared therapy for preventing or treating muscle soreness after exercise in adults. We also aimed to include randomised trials that compared different durations or dosages of WBC. Our prespecified primary outcomes were muscle soreness, subjective recovery (e.g. tiredness, well-being) and adverse effects. Data collection and analysis Two review authors independently screened search results, selected studies, assessed risk of bias and extracted and cross-checked data. Where appropriate, we pooled results of comparable trials. The random-effects model was used for pooling where there was substantial heterogeneity.We assessed the quality of the evidence using GRADE. Main results Four laboratory-based randomised controlled trials were included. These reported results for 64 physically active predominantly young adults (mean age 23 years). All but four participants were male. Two trials were parallel group trials (44 participants) and two were cross-over trials (20 participants). The trials were heterogeneous, including the type, temperature, duration and frequency of WBC, and the type of preceding exercise. None of the trials reported active surveillance of predefined adverse events. All four trials had design features that carried a high risk of bias, potentially limiting the reliability of their findings. The evidence for all outcomes was classified as ’very low’ quality based on the GRADE criteria. Two comparisons were tested: WBC versus control (rest or no WBC), tested in four studies; and WBC versus far-infrared therapy, also tested in one study. No studies compared WBC with other active interventions, such as cold water immersion, or different types and applications of WBC. All four trials compared WBC with rest or no WBC. There was very low quality evidence for lower self-reported muscle soreness (pain at rest) scores after WBC at 1 hour (standardised mean difference (SMD) -0.77, 95% confidence interval (CI) -1.42 to -0.12; 20 participants, 2 cross-over trials); 24 hours (SMD -0.57, 95%CI -1.48 to 0.33) and 48 hours (SMD -0.58, 95% CI -1.37 to 0.21), both with 38 participants, 2 cross-over studies, 1 parallel group study; and 72 hours (SMD -0.65, 95% CI -2.54 to 1.24; 29 participants, 1 cross-over study, 1 parallel group study). Of note is that the 95% CIs also included either no between-group differences or a benefit in favour of the control group. One small cross-over trial (9 participants) found no difference in tiredness but better well-being after WBC at 24 hours post exercise. There was no report of adverse events. One small cross-over trial involving nine well-trained runners provided very low quality evidence of lower levels of muscle soreness after WBC, when compared with infrared therapy, at 1 hour follow-up, but not at 24 or 48 hours. The same trial found no difference in well-being but less tiredness after WBC at 24 hours post exercise. There was no report of adverse events. Authors’ conclusions There is insufficient evidence to determine whether whole-body cryotherapy (WBC) reduces self-reportedmuscle soreness, or improves subjective recovery, after exercise compared with passive rest or no WBC in physically active young adult males. There is no evidence on the use of this intervention in females or elite athletes. The lack of evidence on adverse events is important given that the exposure to extreme temperature presents a potential hazard. Further high-quality, well-reported research in this area is required and must provide detailed reporting of adverse events.
Resumo:
The thesis provides an understanding of the ignored need for a modern air defence system for the Australian air force to meet the growing threat from Japan in the 1930s and early 1940s. The quality of advice provided to, and accepted by, Australian politicians was misleading and eliminated the need for fighters and interceptors despite glaring evidence to the contrary. Based on primary source material, including official documents, Allied and Axis pilot memoirs, popular aviation literature and newspaper and magazine articles and interviews, the thesis highlights the inability of Australian politicians to face the reality of the international situation.
Resumo:
The transition from a steady to an unsteady flow induced by an adiabatic fin on the sidewall of a differentially heated air-filled cavity is numerically investigated. Numerical simulations have been performed over the range of Rayleigh numbers from Ra = 105–109. The temporal development and spatial structures of natural convection flows in the cavity with a fin are described. It has been demonstrated that the fin may induce the transition to an unsteady flow and the critical Rayleigh number for the occurrence of the transition is between 3.72 × 106 and 3.73 × 106. Furthermore, the peak frequencies of the oscillations triggered by different mechanisms are obtained through spectral analysis. It has been found that the flow rate through the cavity with a fin is larger than that without a fin under the unsteady flow, indicating that the fin may improve the unsteady flow in the cavity.
Resumo:
Ceramsite plays a significant role as a biological aerated filter (BAF) in the treatment of wastewater. In this study, a mixture of goethite, sawdust and palygorskite clay was thermally treated to form magnetic porous ceramsite (MPC). An optimization experiment was conducted to measure the compressive strength of the MPC. X-ray diffraction (XRD), scanning electron microscopy (SEM), and polarizing microscopy (PM) characterized the pore structure of the MPC. The results show that a combination of goethite, sawdust and palygorskite clay with a mass ratio of 10:2:5 is suitable for the formation of MPC. The compressive strength of MPC conforms to the Chinese national industrial standard (CJ/T 299-2008) for wastewater treatment. The SEM and PM results also show that the uniform and interconnected pores in MPC were well suited for microbial growth. The MPC produced in this study can serve as a biomedium for advanced wastewater treatment.
Resumo:
Objective: The aim of this study was to develop a model capable of predicting variability in the mental workload experienced by frontline operators under routine and nonroutine conditions. Background: Excess workload is a risk that needs to be managed in safety-critical industries. Predictive models are needed to manage this risk effectively yet are difficult to develop. Much of the difficulty stems from the fact that workload prediction is a multilevel problem. Method: A multilevel workload model was developed in Study 1 with data collected from an en route air traffic management center. Dynamic density metrics were used to predict variability in workload within and between work units while controlling for variability among raters. The model was cross-validated in Studies 2 and 3 with the use of a high-fidelity simulator. Results: Reported workload generally remained within the bounds of the 90% prediction interval in Studies 2 and 3. Workload crossed the upper bound of the prediction interval only under nonroutine conditions. Qualitative analyses suggest that nonroutine events caused workload to cross the upper bound of the prediction interval because the controllers could not manage their workload strategically. Conclusion: The model performed well under both routine and nonroutine conditions and over different patterns of workload variation. Application: Workload prediction models can be used to support both strategic and tactical workload management. Strategic uses include the analysis of historical and projected workflows and the assessment of staffing needs. Tactical uses include the dynamic reallocation of resources to meet changes in demand.
Resumo:
Though increased particulate air pollution has been consistently associated with elevated mortality, evidence regarding whether diminished particulate air pollution would lead to mortality reduction is limited. Citywide air pollution mitigation program during the 2010 Asian Games in Guangzhou, China, provided such an opportunity. Daily mortality from non-accidental, cardiovascular and respiratory diseases was compared for 51 intervention days (November 1–December 21) in 2010 with the same calendar date of baseline years (2006–2009 and 2011). Relative risk (RR) and 95% confidence interval (95% CI) were estimated using a time series Poisson model, adjusting for day of week, public holidays, daily mean temperature and relative humidity. Daily PM10 (particle with aerodynamic diameter less than 10 μm) decreased from 88.64 μg/m3 during the baseline period to 80.61 μg/m3 during the Asian Games period. Other measured air pollutants and weather variables did not differ substantially. Daily mortality from non-accidental, cardiovascular and respiratory diseases decreased from 32, 11 and 6 during the baseline period to 25, 8 and 5 during the Games period, the corresponding RR for the Games period compared with the baseline period was 0.79 (95% CI: 0.73–0.86), 0.77 (95% CI: 0.66–0.89) and 0.68 (95% CI: 0.57–0.80), respectively. No significant decreases were observed in other months of 2010 in Guangzhou and intervention period in two control cities. This finding supports the efforts to reduce air pollution and improve public health through transportation restriction and industrial emission control.
Resumo:
Background Exposure to air pollutants, including diesel particulate matter, has been linked to adverse respiratory health effects. Inhaled diesel particulate matter contains adsorbed organic compounds. It is not clear whether the adsorbed organics or the residual components are more deleterious to airway cells. Using a physiologically relevant model, we investigated the role of diesel organic content on mediating cellular responses of primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface (ALI). Methods Primary HBECs were cultured and differentiated at ALI for at least 28 days. To determine which component is most harmful, we compared primary HBEC responses elicited by residual (with organics removed) diesel emissions (DE) to those elicited by neat (unmodified) DE for 30 and 60 minutes at ALI, with cigarette smoke condensate (CSC) as the positive control, and filtered air as negative control. Cell viability (WST-1 cell proliferation assay), inflammation (TNF-α, IL-6 and IL-8 ELISA) and changes in gene expression (qRT-PCR for HO-1, CYP1A1, TNF-α and IL-8 mRNA) were measured. Results Immunofluorescence and cytological staining confirmed the mucociliary phenotype of primary HBECs differentiated at ALI. Neat DE caused a comparable reduction in cell viability at 30 or 60 min exposures, whereas residual DE caused a greater reduction at 60 min. When corrected for cell viability, cytokine protein secretion for TNF-α, IL-6 and IL-8 were maximal with residual DE at 60 min. mRNA expression for HO-1, CYP1A1, TNF-α and IL-8 was not significantly different between exposures. Conclusion This study provides new insights into epithelial cell responses to diesel emissions using a physiologically relevant aerosol exposure model. Both the organic content and residual components of diesel emissions play an important role in determining bronchial epithelial cell response in vitro. Future studies should be directed at testing potentially useful interventions against the adverse health effects of air pollution exposure.
Resumo:
As more raw sugar factories become involved in the manufacture of by-products and cogeneration, bagasse is becoming an increasingly valuable commodity. However, in most factories, most of the bagasse produced is used to generate steam in relatively old and inefficient boilers. Efficient bagasse fired boilers are a high capital cost item and the cost of supplying the steam required to run a sugar factory by other means is prohibitive. For many factories a more realistic way to reduce bagasse consumption is to increase the efficiency of existing boilers. The Farleigh No. 3 boiler is a relatively old low efficiency boiler. Like many in the industry, the performance of this boiler has been adversely affected by uneven gas and air flow distributions and air heater leaks. The combustion performance and efficiency of this boiler have been significantly improved by making the gas and air flow distributions through the boiler more uniform and repairing the air heater. The estimated bagasse savings easily justify the cost of the boiler improvements.
Resumo:
A general mathematical model for forced air precooling of spherical food products in bulk is developed. The food products are arranged inline to form a rectangular parallelepiped. Chilled air is blown along the height of the package. The governing equations for the transient two-dimensional conduction with internal heat generation in the product, simultaneous heat and mass transfer at the product-air interface and one-dimensional transient energy and species conservation equations for the moist air are solved numerically using finite difference methods. Results are presented in the form of time-temperature histories. Experiments are conducted with model foods in a laboratory scale air precooling tunnel. The agreement between the theoretical and experimental results is found to be good. In general, a single product analysis fails to predict the precooling characteristics of bulk loads of food products. In the range of values investigated, the respiration heat is found to have a negligible effect.
Resumo:
We propose three variants of the extended Kalman filter (EKF) especially suited for parameter estimations in mechanical oscillators under Gaussian white noises. These filters are based on three versions of explicit and derivative-free local linearizations (DLL) of the non-linear drift terms in the governing stochastic differential equations (SDE-s). Besides a basic linearization of the non-linear drift functions via one-term replacements, linearizations using replacements through explicit Euler and Newmark expansions are also attempted in order to ensure higher closeness of true solutions with the linearized ones. Thus, unlike the conventional EKF, the proposed filters do not need computing derivatives (tangent matrices) at any stage. The measurements are synthetically generated by corrupting with noise the numerical solutions of the SDE-s through implicit versions of these linearizations. In order to demonstrate the effectiveness and accuracy of the proposed methods vis-à-vis the conventional EKF, numerical illustrations are provided for a few single degree-of-freedom (DOF) oscillators and a three-DOF shear frame with constant parameters.
Resumo:
Identifying inequalities in air pollution levels across population groups can help address environmental justice concerns. We were interested in assessing these inequalities across major urban areas in Australia. We used a land-use regression model to predict ambient nitrogen dioxide (NO2) levels and sought the best socio-economic and population predictor variables. We used a generalised least squares model that accounted for spatial correlation in NO2 levels to examine the associations between the variables. We found that the best model included the index of economic resources (IER) score as a non-linear variable and the percentage of non-Indigenous persons as a linear variable. NO2 levels decreased with increasing IER scores (higher scores indicate less disadvantage) in almost all major urban areas, and NO2 also decreased slightly as the percentage of non-Indigenous persons increased. However, the magnitude of differences in NO2 levels was small and may not translate into substantive differences in health.
Resumo:
Fluid bed granulation is a key pharmaceutical process which improves many of the powder properties for tablet compression. Dry mixing, wetting and drying phases are included in the fluid bed granulation process. Granules of high quality can be obtained by understanding and controlling the critical process parameters by timely measurements. Physical process measurements and particle size data of a fluid bed granulator that are analysed in an integrated manner are included in process analytical technologies (PAT). Recent regulatory guidelines strongly encourage the pharmaceutical industry to apply scientific and risk management approaches to the development of a product and its manufacturing process. The aim of this study was to utilise PAT tools to increase the process understanding of fluid bed granulation and drying. Inlet air humidity levels and granulation liquid feed affect powder moisture during fluid bed granulation. Moisture influences on many process, granule and tablet qualities. The approach in this thesis was to identify sources of variation that are mainly related to moisture. The aim was to determine correlations and relationships, and utilise the PAT and design space concepts for the fluid bed granulation and drying. Monitoring the material behaviour in a fluidised bed has traditionally relied on the observational ability and experience of an operator. There has been a lack of good criteria for characterising material behaviour during spraying and drying phases, even though the entire performance of a process and end product quality are dependent on it. The granules were produced in an instrumented bench-scale Glatt WSG5 fluid bed granulator. The effect of inlet air humidity and granulation liquid feed on the temperature measurements at different locations of a fluid bed granulator system were determined. This revealed dynamic changes in the measurements and enabled finding the most optimal sites for process control. The moisture originating from the granulation liquid and inlet air affected the temperature of the mass and pressure difference over granules. Moreover, the effects of inlet air humidity and granulation liquid feed rate on granule size were evaluated and compensatory techniques used to optimize particle size. Various end-point indication techniques of drying were compared. The ∆T method, which is based on thermodynamic principles, eliminated the effects of humidity variations and resulted in the most precise estimation of the drying end-point. The influence of fluidisation behaviour on drying end-point detection was determined. The feasibility of the ∆T method and thus the similarities of end-point moisture contents were found to be dependent on the variation in fluidisation between manufacturing batches. A novel parameter that describes behaviour of material in a fluid bed was developed. Flow rate of the process air and turbine fan speed were used to calculate this parameter and it was compared to the fluidisation behaviour and the particle size results. The design space process trajectories for smooth fluidisation based on the fluidisation parameters were determined. With this design space it is possible to avoid excessive fluidisation and improper fluidisation and bed collapse. Furthermore, various process phenomena and failure modes were observed with the in-line particle size analyser. Both rapid increase and a decrease in granule size could be monitored in a timely manner. The fluidisation parameter and the pressure difference over filters were also discovered to express particle size when the granules had been formed. The various physical parameters evaluated in this thesis give valuable information of fluid bed process performance and increase the process understanding.
Resumo:
With the aim of finding simple methods for the fabrication of He II refilling devices, He II flow has been studied through filters made from various fine powders (oxides and metals, grain sizes in the range 0.05–2 μm) by compacting them under pressure. The results obtained for the different states of He II flow, especially in the “breakthrough” and “easy flow” range, are explained by the fountain effect, He II hydrodynamics and the choking effect. According to the results, pressedpowder filters can be classified into three groups with different flow characteristics, of which the “good transfer filters with a behaviour neatly described by simple theory are suitable for use in He II refilling devices.
Resumo:
Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.
Resumo:
Aims: To investigate methods for the recovery of airborne bacteria within pig sheds and to then use the appropriate methods to determine the levels of heterotrophs and Escherichia coli in the air within sheds. Methods and Results: AGI-30 impingers and a six-stage Andersen multi-stage sampler (AMS) were used for the collection of aerosols. Betaine and catalase were added to impinger collection fluid and the agar plates used in the AMS. Suitable media for enumerating E. coli with the Andersen sampler were also evaluated. The addition of betaine and catalase gave no marked increase in the recovery of heterotrophs or E. coli. No marked differences were found in the media used for enumeration of E. coli. The levels of heterotrophs and E. coli in three piggeries, during normal pig activities, were 2Æ2 · 105 and 21 CFU m)3 respectively. Conclusions: The failure of the additives to improve the recovery of either heterotrophs or E. coli suggests that these organisms are not stressed in the piggery environment. The levels of heterotrophs in the air inside the three Queensland piggeries investigated are consistent with those previously reported in other studies. Flushing with ponded effluent had no marked or consistent effect on the heterotroph or E. coli levels. Significance and Impact of the Study: Our work suggests that levels of airborne heterotrophs and E. coli inside pig sheds have no strong link with effluent flushing. It would seem unlikely that any single management activity within a pig shed has a dominant influence on levels of airborne heterotrophs and E. coli