883 resultados para Agent-based systems
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, performed so that the competitiveness could be increased, but with exponential implications in the increase of the complexity and unpredictability in those markets’ scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behavior. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This paper presents the Multi-Agent System for Competitive Electricity Markets (MASCEM) – a simulator based on multi-agent technology that provides a realistic platform to simulate electricity markets, the numerous negotiation opportunities and the participating entities.
Resumo:
Traditional vertically integrated power utilities around the world have evolved from monopoly structures to open markets that promote competition among suppliers and provide consumers with a choice of services. Market forces drive the price of electricity and reduce the net cost through increased competition. Electricity can be traded in both organized markets or using forward bilateral contracts. This article focuses on bilateral contracts and describes some important features of an agent-based system for bilateral trading in competitive markets. Special attention is devoted to the negotiation process, demand response in bilateral contracting, and risk management. The article also presents a case study on forward bilateral contracting: a retailer agent and a customer agent negotiate a 24h-rate tariff.
Resumo:
Multi-agent approaches have been widely used to model complex systems of distributed nature with a large amount of interactions between the involved entities. Power systems are a reference case, mainly due to the increasing use of distributed energy sources, largely based on renewable sources, which have potentiated huge changes in the power systems’ sector. Dealing with such a large scale integration of intermittent generation sources led to the emergence of several new players, as well as the development of new paradigms, such as the microgrid concept, and the evolution of demand response programs, which potentiate the active participation of consumers. This paper presents a multi-agent based simulation platform which models a microgrid environment, considering several different types of simulated players. These players interact with real physical installations, creating a realistic simulation environment with results that can be observed directly in the reality. A case study is presented considering players’ responses to a demand response event, resulting in an intelligent increase of consumption in order to face the wind generation surplus.
Resumo:
It is imperative to accept that failures can and will occur, even in meticulously designed distributed systems, and design proper measures to counter those failures. Passive replication minimises resource consumption by only activating redundant replicas in case of failures, as typically providing and applying state updates is less resource demanding than requesting execution. However, most existing solutions for passive fault tolerance are usually designed and configured at design time, explicitly and statically identifying the most critical components and their number of replicas, lacking the needed flexibility to handle the runtime dynamics of distributed component-based embedded systems. This paper proposes a cost-effective adaptive fault tolerance solution with a significant lower overhead compared to a strict active redundancy-based approach, achieving a high error coverage with the minimum amount of redundancy. The activation of passive replicas is coordinated through a feedback-based coordination model that reduces the complexity of the needed interactions among components until a new collective global service solution is determined, improving the overall maintainability and robustness of the system.
Resumo:
Dissertation to obtain the Master degree in Electrical Engineering and Computer Science
Resumo:
Os Mercados Eletrónicos atingiram uma complexidade e nível de sofisticação tão elevados, que tornaram inadequados os modelos de software convencionais. Estes mercados são caracterizados por serem abertos, dinâmicos e competitivos, e constituídos por várias entidades independentes e heterogéneas. Tais entidades desempenham os seus papéis de forma autónoma, seguindo os seus objetivos, reagindo às ocorrências do ambiente em que se inserem e interagindo umas com as outras. Esta realidade levou a que existisse por parte da comunidade científica um especial interesse no estudo da negociação automática executada por agentes de software [Zhang et al., 2011]. No entanto, a diversidade dos atores envolvidos pode levar à existência de diferentes conceptualizações das suas necessidades e capacidades dando origem a incompatibilidades semânticas, que podem prejudicar a negociação e impedir a ocorrência de transações que satisfaçam as partes envolvidas. Os novos mercados devem, assim, possuir mecanismos que lhes permitam exibir novas capacidades, nomeadamente a capacidade de auxiliar na comunicação entre os diferentes agentes. Pelo que, é defendido neste trabalho que os mercados devem oferecer serviços de ontologias que permitam facilitar a interoperabilidade entre os agentes. No entanto, os humanos tendem a ser relutantes em aceitar a conceptualização de outros, a não ser que sejam convencidos de que poderão conseguir um bom negócio. Neste contexto, a aplicação e exploração de relações capturadas em redes sociais pode resultar no estabelecimento de relações de confiança entre vendedores e consumidores, e ao mesmo tempo, conduzir a um aumento da eficiência da negociação e consequentemente na satisfação das partes envolvidas. O sistema AEMOS é uma plataforma de comércio eletrónico baseada em agentes que inclui serviços de ontologias, mais especificamente, serviços de alinhamento de ontologias, incluindo a recomendação de possíveis alinhamentos entre as ontologias dos parceiros de negociação. Este sistema inclui também uma componente baseada numa rede social, que é construída aplicando técnicas de análise de redes socias sobre informação recolhida pelo mercado, e que permite melhorar a recomendação de alinhamentos e auxiliar os agentes na sua escolha. Neste trabalho são apresentados o desenvolvimento e implementação do sistema AEMOS, mais concretamente: • É proposto um novo modelo para comércio eletrónico baseado em agentes que disponibiliza serviços de ontologias; • Adicionalmente propõem-se o uso de redes sociais emergentes para captar e explorar informação sobre relações entre os diferentes parceiros de negócio; • É definida e implementada uma componente de serviços de ontologias que é capaz de: • o Sugerir alinhamentos entre ontologias para pares de agentes; • o Traduzir mensagens escritas de acordo com uma ontologia em mensagens escritas de acordo com outra, utilizando alinhamentos previamente aprovados; • o Melhorar os seus próprios serviços recorrendo às funcionalidades disponibilizadas pela componente de redes sociais; • É definida e implementada uma componente de redes sociais que: • o É capaz de construir e gerir um grafo de relações de proximidade entre agentes, e de relações de adequação de alinhamentos a agentes, tendo em conta os perfis, comportamento e interação dos agentes, bem como a cobertura e utilização dos alinhamentos; • o Explora e adapta técnicas e algoritmos de análise de redes sociais às várias fases dos processos do mercado eletrónico. A implementação e experimentação do modelo proposto demonstra como a colaboração entre os diferentes agentes pode ser vantajosa na melhoria do desempenho do sistema e como a inclusão e combinação de serviços de ontologias e redes sociais se reflete na eficiência da negociação de transações e na dinâmica do mercado como um todo.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Cloud computing has been one of the most important topics in Information Technology which aims to assure scalable and reliable on-demand services over the Internet. The expansion of the application scope of cloud services would require cooperation between clouds from different providers that have heterogeneous functionalities. This collaboration between different cloud vendors can provide better Quality of Services (QoS) at the lower price. However, current cloud systems have been developed without concerns of seamless cloud interconnection, and actually they do not support intercloud interoperability to enable collaboration between cloud service providers. Hence, the PhD work is motivated to address interoperability issue between cloud providers as a challenging research objective. This thesis proposes a new framework which supports inter-cloud interoperability in a heterogeneous computing resource cloud environment with the goal of dispatching the workload to the most effective clouds available at runtime. Analysing different methodologies that have been applied to resolve various problem scenarios related to interoperability lead us to exploit Model Driven Architecture (MDA) and Service Oriented Architecture (SOA) methods as appropriate approaches for our inter-cloud framework. Moreover, since distributing the operations in a cloud-based environment is a nondeterministic polynomial time (NP-complete) problem, a Genetic Algorithm (GA) based job scheduler proposed as a part of interoperability framework, offering workload migration with the best performance at the least cost. A new Agent Based Simulation (ABS) approach is proposed to model the inter-cloud environment with three types of agents: Cloud Subscriber agent, Cloud Provider agent, and Job agent. The ABS model is proposed to evaluate the proposed framework.
Resumo:
The cure characteristics and mechanical properties of short nylon fiber- styrene /whole tyre reclaim (SBR/WTR) composites with and without an interfacial bonding agent based on 4,4 diphenyl methane diisocyanate and polyethylene glycol (MDI/PEG) have been studied. An 80:40 blend of SBR/ WTR reinforced with 20 phr of short nylon fiber has been selected and the MDI/ PEG ratio has been changed from 0.67:1 to 2:1. The minimum and maximum torques increased with isocyanate concentration. The scorch time and cure time showed an initial reduction. The cure rate showed an initial improvement. Tensile strength, tear strength and abrasion resistance increased with MDI/PEG ratio, these values were higher in longitudinal direction. Resilience and compression set increased with isocyanate concentration.
Resumo:
Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent-based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve self-managing distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.
Resumo:
Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent-based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve self-managing distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.
Resumo:
Space applications demand the need for building reliable systems. Autonomic computing defines such reliable systems as self-managing systems. The work reported in this paper combines agent based and swarm robotic approaches leading to swarm-array computing, a novel technique to achieve autonomy for distributed parallel computing systems. Two swarm-array computing approaches based on swarms of computational resources and swarms of tasks are explored. FPGA is considered as the computing system. The feasibility of the two proposed approaches that binds the computing system and the task together is simulated on the SeSAm multi-agent simulator.
Resumo:
Integrated simulation models can be useful tools in farming system research. This chapter reviews three commonly used approaches, i.e. linear programming, system dynamics and agent-based models. Applications of each approach are presented and strengths and drawbacks discussed. We argue that, despite some challenges, mainly related to the integration of different approaches, model validation and the representation of human agents, integrated simulation models contribute important insights to the analysis of farming systems. They help unravelling the complex and dynamic interactions and feedbacks among bio-physical, socio-economic, and institutional components across scales and levels in farming systems. In addition, they can provide a platform for integrative research, and can support transdisciplinary research by functioning as learning platforms in participatory processes.
Resumo:
Users are facing an increasing challenge of managing information and being available anytime anywhere, as the web exponentially grows. As a consequence, assisting them in their routine tasks has become a relevant issue to be addressed. In this paper, we introduce a software framework that supports the development of Personal Assistance Software (PAS). It relies on the idea of exposing a high level user model in order to increase user trust in the task delegation process as well as empowering them to manage it. The framework provides a synchronization mechanism that is responsible for dynamically adapting an underlying BDI agent-based running implementation in order to keep this high-level view of user customizations consistent with it.