872 resultados para Agent-based methodologies
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e Computadores
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which simulates the electricity markets environment. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated by being included in ALBidS and then compared with the application of an Artificial Neural Network, originating promising results. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator.
Resumo:
The energy sector in industrialized countries has been restructured in the last years, with the purpose of decreasing electricity prices through the increase in competition, and facilitating the integration of distributed energy resources. However, the restructuring process increased the complexity in market players' interactions and generated emerging problems and new issues to be addressed. In order to provide players with competitive advantage in the market, decision support tools that facilitate the study and understanding of these markets become extremely useful. In this context arises MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), a multi-agent based simulator that models real electricity markets. To reinforce MASCEM with the capability of recreating the electricity markets reality in the fullest possible extent, it is crucial to make it able to simulate as many market models and player types as possible. This paper presents a new negotiation model implemented in MASCEM based on the negotiation model used in day-ahead market (Elspot) of Nord Pool. This is a key module to study competitive electricity markets, as it presents well defined and distinct characteristics from the already implemented markets, and it is a reference electricity market in Europe (the one with the larger amount of traded power).
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which performs realistic simulations of the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from each market context. However, it is still necessary to adequately optimize the players’ portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering different market opportunities (bilateral negotiation, market sessions, and operation in different markets) and the negotiation context such as the peak and off-peak periods of the day, the type of day (business day, weekend, holiday, etc.) and most important, the renewable based distributed generation forecast. The proposed approach is tested and validated using real electricity markets data from the Iberian operator – MIBEL.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.
Resumo:
Electricity markets worldwide are complex and dynamic environments with very particular characteristics. These are the result of electricity markets’ restructuring and evolution into regional and continental scales, along with the constant changes brought by the increasing necessity for an adequate integration of renewable energy sources. The rising complexity and unpredictability in electricity markets has increased the need for the intervenient entities in foreseeing market behaviour. Market players and regulators are very interested in predicting the market’s behaviour. Market players need to understand the market behaviour and operation in order to maximize their profits, while market regulators need to test new rules and detect market inefficiencies before they are implemented. The growth of usage of simulation tools was driven by the need for understanding those mechanisms and how the involved players' interactions affect the markets' outcomes. Multi-agent based software is particularly well fitted to analyse dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. Several modelling tools directed to the study of restructured wholesale electricity markets have emerged. Still, they have a common limitation: the lack of interoperability between the various systems to allow the exchange of information and knowledge, to test different market models and to allow market players from different systems to interact in common market environments. This dissertation proposes the development and implementation of ontologies for semantic interoperability between multi-agent simulation platforms in the scope of electricity markets. The added value provided to these platforms is given by enabling them sharing their knowledge and market models with other agent societies, which provides the means for an actual improvement in current electricity markets studies and development. The proposed ontologies are implemented in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) and tested through the interaction between MASCEM agents and agents from other multi-agent based simulators. The implementation of the proposed ontologies has also required a complete restructuring of MASCEM’s architecture and multi-agent model, which is also presented in this dissertation. The results achieved in the case studies allow identifying the advantages of the novel architecture of MASCEM, and most importantly, the added value of using the proposed ontologies. They facilitate the integration of independent multi-agent simulators, by providing a way for communications to be understood by heterogeneous agents from the various systems.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
This thesis proposes a methodology for modelling business interoperability in a context of cooperative industrial networks. The purpose is to develop a methodology that enables the design of cooperative industrial network platforms that are able to deliver business interoperability and the analysis of its impact on the performance of these platforms. To achieve the proposed objective, two modelling tools have been employed: the Axiomatic Design Theory for the design of interoperable platforms; and Agent-Based Simulation for the analysis of the impact of business interoperability. The sequence of the application of the two modelling tools depends on the scenario under analysis, i.e. whether the cooperative industrial network platform exists or not. If the cooperative industrial network platform does not exist, the methodology suggests first the application of the Axiomatic Design Theory to design different configurations of interoperable cooperative industrial network platforms, and then the use of Agent-Based Simulation to analyse or predict the business interoperability and operational performance of the designed configurations. Otherwise, one should start by analysing the performance of the existing platform and based on the achieved results, decide whether it is necessary to redesign it or not. If the redesign is needed, simulation is once again used to predict the performance of the redesigned platform. To explain how those two modelling tools can be applied in practice, a theoretical modelling framework, a theoretical Axiomatic Design model and a theoretical Agent-Based Simulation model are proposed. To demonstrate the applicability of the proposed methodology and/or to validate the proposed theoretical models, a case study regarding a Portuguese Reverse Logistics cooperative network (Valorpneu network) and a case study regarding a Portuguese construction project (Dam Baixo Sabor network) are presented. The findings of the application of the proposed methodology to these two case studies suggest that indeed the Axiomatic Design Theory can effectively contribute in the design of interoperable cooperative industrial network platforms and that Agent-Based Simulation provides an effective set of tools for analysing the impact of business interoperability on the performance of those platforms. However, these conclusions cannot be generalised as only two case studies have been carried out. In terms of relevance to theory, this is the first time that the network effect is addressed in the analysis of the impact of business interoperability on the performance of networked companies and also the first time that a holistic approach is proposed to design interoperable cooperative industrial network platforms. Regarding the practical implications, the proposed methodology is intended to provide industrial managers a management tool that can guide them easily, and in practical and systematic way, in the design of configurations of interoperable cooperative industrial network platforms and/or in the analysis of the impact of business interoperability on the performance of their companies and the networks where their companies operate.
Resumo:
This work presents a molecular-scale agent-based model for the simulation of enzymatic reactions at experimentally measured concentrations. The model incorporates stochasticity and spatial dependence, using diffusing and reacting particles with physical dimensions. We developed strategies to adjust and validate the enzymatic rates and diffusion coefficients to the information required by the computational agents, i.e., collision efficiency, interaction logic between agents, the time scale associated with interactions (e.g., kinetics), and agent velocity. Also, we tested the impact of molecular location (a source of biological noise) in the speed at which the reactions take place. Simulations were conducted for experimental data on the 2-hydroxymuconate tautomerase (EC 5.3.2.6, UniProt ID Q01468) and the Steroid Delta-isomerase (EC 5.3.3.1, UniProt ID P07445). Obtained results demonstrate that our approach is in accordance to existing experimental data and long-term biophysical and biochemical assumptions.
Resumo:
We analyze the classical Bertrand model when consumers exhibit some strategic behavior in deciding from which seller they will buy. We use two related but different tools. Both consider a probabilistic learning (or evolutionary) mechanism, and in the two of them consumers' behavior in uences the competition between the sellers. The results obtained show that, in general, developing some sort of loyalty is a good strategy for the buyers as it works in their best interest. First, we consider a learning procedure described by a deterministic dynamic system and, using strong simplifying assumptions, we can produce a description of the process behavior. Second, we use nite automata to represent the strategies played by the agents and an adaptive process based on genetic algorithms to simulate the stochastic process of learning. By doing so we can relax some of the strong assumptions used in the rst approach and still obtain the same basic results. It is suggested that the limitations of the rst approach (analytical) provide a good motivation for the second approach (Agent-Based). Indeed, although both approaches address the same problem, the use of Agent-Based computational techniques allows us to relax hypothesis and overcome the limitations of the analytical approach.
Resumo:
Aquest projecte descriu una plataforma de simulació per a xarxes de sensors des de la perspectiva dels sistemes multi-agents. La plataforma s'ha dissenyat per facilitar la simulació de diferents aplicacions concretes de xarxes de sensors. A més, s'ha entregat com a artefacte del projecte IEA (Institucions Electròniques Autònomes, TIN2006-15662-C02-0) de l'IIIACSIC. Dins l'entorn de l'IEA, aquesta és l'eina que aporta les capacitats de simulació per donar suport al disseny d'algorismes adaptatius per a xarxes de sensors.
Resumo:
Aquest projecte consisteix en el disseny i desenvolupament d'una arquitectura de serveis sota el paradigma dels agents inteligents. El propòsit d'ADASMI (Architecture for Dynamic Agent Service Management and Interaction) és permetre la gestió i utilització de serveis per altres agents. L'arquitectura s'ha implementat utilitzant la plataforma d'agents de JADE i es pot utilitzar amb qualsevol altra plataforma que compleixi els estàndards d'IEEE FIPA. A més, és prou flexible com per adaptar-se en entorns dinàmics, com per exemple les xarxes ad-hoc en situacions d'emergència.
Resumo:
Los servicios de salud son sistemas muy complejos, pero de alta importancia, especialmente en algunos momentos críticos, en todo el mundo. Los departamentos de urgencias pueden ser una de las áreas más dinámicas y cambiables de todos los servicios de salud y a la vez más vulnerables a dichos cambios. La mejora de esos departamentos se puede considerar uno de los grandes retos que tiene cualquier administrador de un hospital, y la simulación provee una manera de examinar este sistema tan complejo sin poner en peligro los pacientes que son atendidos. El objetivo de este trabajo ha sido el modelado de un departamento de urgencias y el desarrollo de un simulador que implementa este modelo con la finalidad de explorar el comportamiento y las características de dicho servicio de urgencias. El uso del simulador ofrece la posibilidad de visualizar el comportamiento del modelo con diferentes parámetros y servirá como núcleo de un sistema de ayuda a la toma de decisiones que pueda ser usado en departamentos de urgencias. El modelo se ha desarrollado con técnicas de modelado basado en agentes (ABM) que permiten crear modelos funcionalmente más próximos a la realidad que los modelos de colas o de dinámicas de sistemas, al permitir la inclusión de la singularidad que implica el modelado a nivel de las personas. Los agentes del modelo presentado, descritos internamente como máquinas de estados, representan a todo el personal del departamento de urgencias y los pacientes que usan este servicio. Un análisis del modelo a través de su implementación en el simulador muestra que el sistema se comporta de manera semejante a un departamento de urgencias real.
Resumo:
Projecte de recerca elaborat a partir d’una estada a l’Snider Entrepreneurial Research Center de la Wharton School de la University of Pennsilvanya y, EUA entre juliol i desembre del 2007. L’objectiu d’aquest projecte és estudiar la relació entre les estratègies de gestió del coneixement i les tecnologies de la informació i la comunicació (TIC) en l’evolució de les poblacions d’organitzacions i els seus efectes en els patrons industrials d’aglomeració espacial. Per a això s’adopta una aproximació fonamentada en la utilització d'un model basats en agents per a obtenir hipòtesis significatives i provables sobre l’evolució de les poblacions d’organitzacions al si de clústers geogràfics. El model de simulació incorpora les perspectives i supòsits d’un marc conceptual, l’Espai de la Informació o I-Space. Això permet una conceptualització basada en la informació de l’entorn econòmic que té en compte les seves dimensions espacials i temporals. Mitjançant els paràmetres del model es dóna la possibilitat d’assignar estratègies específiques de gestió del coneixement als diversos agents i de localitzar-los en una posició de l’espai físic. La simulació mostra com l'adopció d'estratègies diverses pel que fa a la gestió del coneixement influeix en l'evolució de les organitzacions i de la seva localització espacial, i que aquesta evolució es veu modificada pel desenvolupament de les TIC. A través de la modelització de dos casos ben coneguts de clústers geogràfics d’alta tecnologia, com són Silicon Valley a Califòrnia i la Route 128 als voltants de Boston, s’estudia la interrelació entre les estratègies de gestió del coneixement adoptades per les empreses i la seva tria de localització espacial, i també com això és afectat per l’evolució de les tecnologies de la informació i de la comunicació (TIC). Els resultats obtinguts generen una sèrie d’hipòtesis de rica potencialitat sobre l’impacte del desenvolupament de les TIC en la dinàmica d’aquests clusters geogràfics. Concretament, es troba que la estructuració del coneixement i l’aglomeració espacial co-evolucionen i que aquesta coevolució es veu significativament alterada pel desenvolupament de les TIC.