851 resultados para Agent-based brokerage platform


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-agent systems are complex systems comprised of multiple intelligent agents that act either independently or in cooperation with one another. Agent-based modelling is a method for studying complex systems like economies, societies, ecologies etc. Due to their complexity, very often mathematical analysis is limited in its ability to analyse such systems. In this case, agent-based modelling offers a practical, constructive method of analysis. The objective of this book is to shed light on some emergent properties of multi-agent systems. The authors focus their investigation on the effect of knowledge exchange on the convergence of complex, multi-agent systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main idea of our approach is that the domain ontology is not only the instrument of learning but an object of examining student skills. We propose for students to build the domain ontology of examine discipline and then compare it with etalon one. Analysis of student mistakes allows to propose them personalized recommendations and to improve the course materials in general. For knowledge interoperability we apply Semantic Web technologies. Application of agent-based technologies in e-learning provides the personification of students and tutors and saved all users from the routine operations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the integration of quiz mechanism into digital game-based learning platform addressing environmental and social issues caused by population growth. 50 participants' learning outcomes were compared before and after the session. Semi-structured interview was used to gather participants' viewpoints regarding of issues presented in the game. Phenomenography was used as a methodology for data collection and analysis. Preliminary outcomes have shown that the current game implementation and quiz mechanism can be used to: (1) promote learning and awareness on environmental and social issues and (2) sustain players' attention and engagements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene-based silica fiber-optic sensors, with high sensitivity, fast response, and low cost, have shown great promise for gas sensing applications. In this letter, by covering a monolayer of p-doped graphene on a D-shaped microstructured polymer fiber Bragg grating (FBG), we propose and demonstrate a novel biochemical probe sensor, the graphene-based D-shaped polymer FBG (GDPFBG). Due to the graphene-based surface evanescent field enhancement, this sensor shows high sensitivity to detect surrounding biochemical parameters. By monitoring the Bragg peak locations of the GDPFBG online, human erythrocyte (red blood cell) solutions with different cellular concentrations ranging from 0 to 104 ppm were detected precisely, with the maximum resolution of sub-ppm. Such a sensor is structurally compact, is clinically acceptable, and provides good recoverability, offering a state-of-the-art polymer-fiber-based sensing platform for highly sensitive in situ and in vivo cell detection applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply Agent-Based Modeling and Simulation (ABMS) to investigate a set of problems in a retail context. Specifically, we are working to understand the relationship between human resource management practices and retail productivity. Despite the fact we are working within a relatively novel and complex domain, it is clear that intelligent agents do offer potential for developing organizational capabilities in the future. Our multi-disciplinary research team has worked with a UK department store to collect data and capture perceptions about operations from actors within departments. Based on this case study work, we have built a simulator that we present in this paper. We then use the simulator to gather empirical evidence regarding two specific management practices: empowerment and employee development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intelligent agents offer a new and exciting way of understanding the world of work. Agent-Based Simulation (ABS), one way of using intelligent agents, carries great potential for progressing our understanding of management practices and how they link to retail performance. We have developed simulation models based on research by a multi-disciplinary team of economists, work psychologists and computer scientists. We will discuss our experiences of implementing these concepts working with a well-known retail department store. There is no doubt that management practices are linked to the performance of an organisation (Reynolds et al., 2005; Wall & Wood, 2005). Best practices have been developed, but when it comes down to the actual application of these guidelines considerable ambiguity remains regarding their effectiveness within particular contexts (Siebers et al., forthcoming a). Most Operational Research (OR) methods can only be used as analysis tools once management practices have been implemented. Often they are not very useful for giving answers to speculative ‘what-if’ questions, particularly when one is interested in the development of the system over time rather than just the state of the system at a certain point in time. Simulation can be used to analyse the operation of dynamic and stochastic systems. ABS is particularly useful when complex interactions between system entities exist, such as autonomous decision making or negotiation. In an ABS model the researcher explicitly describes the decision process of simulated actors at the micro level. Structures emerge at the macro level as a result of the actions of the agents and their interactions with other agents and the environment. We will show how ABS experiments can deal with testing and optimising management practices such as training, empowerment or teamwork. Hence, questions such as “will staff setting their own break times improve performance?” can be investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When designing systems that are complex, dynamic and stochastic in nature, simulation is generally recognised as one of the best design support technologies, and a valuable aid in the strategic and tactical decision making process. A simulation model consists of a set of rules that define how a system changes over time, given its current state. Unlike analytical models, a simulation model is not solved but is run and the changes of system states can be observed at any point in time. This provides an insight into system dynamics rather than just predicting the output of a system based on specific inputs. Simulation is not a decision making tool but a decision support tool, allowing better informed decisions to be made. Due to the complexity of the real world, a simulation model can only be an approximation of the target system. The essence of the art of simulation modelling is abstraction and simplification. Only those characteristics that are important for the study and analysis of the target system should be included in the simulation model. The purpose of simulation is either to better understand the operation of a target system, or to make predictions about a target system’s performance. It can be viewed as an artificial white-room which allows one to gain insight but also to test new theories and practices without disrupting the daily routine of the focal organisation. What you can expect to gain from a simulation study is very well summarised by FIRMA (2000). His idea is that if the theory that has been framed about the target system holds, and if this theory has been adequately translated into a computer model this would allow you to answer some of the following questions: · Which kind of behaviour can be expected under arbitrarily given parameter combinations and initial conditions? · Which kind of behaviour will a given target system display in the future? · Which state will the target system reach in the future? The required accuracy of the simulation model very much depends on the type of question one is trying to answer. In order to be able to respond to the first question the simulation model needs to be an explanatory model. This requires less data accuracy. In comparison, the simulation model required to answer the latter two questions has to be predictive in nature and therefore needs highly accurate input data to achieve credible outputs. These predictions involve showing trends, rather than giving precise and absolute predictions of the target system performance. The numerical results of a simulation experiment on their own are most often not very useful and need to be rigorously analysed with statistical methods. These results then need to be considered in the context of the real system and interpreted in a qualitative way to make meaningful recommendations or compile best practice guidelines. One needs a good working knowledge about the behaviour of the real system to be able to fully exploit the understanding gained from simulation experiments. The goal of this chapter is to brace the newcomer to the topic of what we think is a valuable asset to the toolset of analysts and decision makers. We will give you a summary of information we have gathered from the literature and of the experiences that we have made first hand during the last five years, whilst obtaining a better understanding of this exciting technology. We hope that this will help you to avoid some pitfalls that we have unwittingly encountered. Section 2 is an introduction to the different types of simulation used in Operational Research and Management Science with a clear focus on agent-based simulation. In Section 3 we outline the theoretical background of multi-agent systems and their elements to prepare you for Section 4 where we discuss how to develop a multi-agent simulation model. Section 5 outlines a simple example of a multi-agent system. Section 6 provides a collection of resources for further studies and finally in Section 7 we will conclude the chapter with a short summary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of research work carried out in the field of Operations-Research uses methods and algorithms to optimize the pick-up and delivery problem. Most studies aim to solve the vehicle routing problem, to accommodate optimum delivery orders, vehicles etc. This paper focuses on green logistics approach, where existing Public Transport infrastructure capability of a city is used for the delivery of small and medium sized packaged goods thus, helping improve the situation of urban congestion and greenhouse gas emissions reduction. It carried out a study to investigate the feasibility of the proposed multi-agent based simulation model, for efficiency of cost, time and energy consumption. Multimodal Dijkstra Shortest Path algorithm and Nested Monte Carlo Search have been employed for a two-phase algorithmic approach used for generation of time based cost matrix. The quality of the tour is dependent on the efficiency of the search algorithm implemented for plan generation and route planning. The results reveal a definite advantage of using Public Transportation over existing delivery approaches in terms of energy efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent daily congestion has been increasing in recent years, particularly along major corridors during selected periods in the mornings and evenings. On certain segments, these roadways are often at or near capacity. However, a conventional Predefined control strategy did not fit the demands that changed over time, making it necessary to implement the various dynamical lane management strategies discussed in this thesis. Those strategies include hard shoulder running, reversible HOV lanes, dynamic tolls and variable speed limit. A mesoscopic agent-based DTA model is used to simulate different strategies and scenarios. From the analyses, all strategies aim to mitigate congestion in terms of the average speed and average density. The largest improvement can be found in hard shoulder running and reversible HOV lanes while the other two provide more stable traffic. In terms of average speed and travel time, hard shoulder running is the most congested strategy for I-270 to help relieve the traffic pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study an agent based model to investigate the role of asymmetric information degrees for market evolution. This model is quite simple and may be treated analytically since the consumers evaluate the quality of a certain good taking into account only the quality of the last good purchased plus her perceptive capacity beta. As a consequence, the system evolves according to a stationary Markov chain. The value of a good offered by the firms increases along with quality according to an exponent alpha, which is a measure of the technology. It incorporates all the technological capacity of the production systems such as education, scientific development and techniques that change the productivity rates. The technological level plays an important role to explain how the asymmetry of information may affect the market evolution in this model. We observe that, for high technological levels, the market can detect adverse selection. The model allows us to compute the maximum asymmetric information degree before the market collapses. Below this critical point the market evolves during a limited period of time and then dies out completely. When beta is closer to 1 (symmetric information), the market becomes more profitable for high quality goods, although high and low quality markets coexist. The maximum asymmetric information level is a consequence of an ergodicity breakdown in the process of quality evaluation. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a kinetic Ising model which represents a generic agent-based model for various types of socio-economic systems. We study the case of a finite (and not necessarily large) number of agents N as well as the asymptotic case when the number of agents tends to infinity. The main ingredient are individual decision thresholds which are either fixed over time (corresponding to quenched disorder in the Ising model, leading to nonlinear deterministic dynamics which are generically non-ergodic) or which may change randomly over time (corresponding to annealed disorder, leading to ergodic dynamics). We address the question how increasing the strength of annealed disorder relative to quenched disorder drives the system from non-ergodic behavior to ergodicity. Mathematically rigorous analysis provides an explicit and detailed picture for arbitrary realizations of the quenched initial thresholds, revealing an intriguing ""jumpy"" transition from non-ergodicity with many absorbing sets to ergodicity. For large N we find a critical strength of annealed randomness, above which the system becomes asymptotically ergodic. Our theoretical results suggests how to drive a system from an undesired socio-economic equilibrium (e. g. high level of corruption) to a desirable one (low level of corruption).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives Microsatellite instability (MSI) induction by alkylating agent-based chemotherapy (ACHT) may underlie both tumor resistance to chemotherapy and secondary leukaemias in cancer patients. We investigated if ACHT could induce MSI in tumor-derived plasma-circulating DNA (pfDNA) and in normal peripheral blood mononuclear (PBMN) cells. We also evaluated if amifostine could interfere with this process in an in-vitro model. Methods MSI was determined in pfDNA, PBMN cells and urine cell-free DNA (ufDNA) of 33 breast cancer patients before and after ACHT. MCF-7 cells and PBMN from normal donors were exposed in vitro to melphalan, with or without amifostine. Results We observed at least one MSI event in PBMN cells, pfDNA or ufDNA of 87, 80 and 80% of patients, respectively. In vitro, melphalan induced MSI in both MCF-7 and normal PBMN cells. In PBMN cells, ACHT-induced MSI occurred together with a significant decrease in the expression of the DNA mismatch repair gene hMSH2. Amifostine decreased hMSH2 expression and also prevented MSI induction only in normal PBMN cells. Conclusions ACHT induced MSI in PBMN cells and in tumour-derived pfDNA. Because of its protective effect against ACHT induction of MSI in normal PBMN cells in vitro, amifostine may be a potential agent for preventing secondary leukaemias in patients exposed to ACHT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a multi-agent based simulation (MABS) framework to construct an artificial electric power market populated with learning agents. The artificial market, named TEMMAS (The Electricity Market Multi-Agent Simulator), explores the integration of two design constructs: (i) the specification of the environmental physical market properties and (ii) the specification of the decision-making (deliberative) and reactive agents. TEMMAS is materialized in an experimental setup involving distinct power generator companies that operate in the market and search for the trading strategies that best exploit their generating units' resources. The experimental results show a coherent market behavior that emerges from the overall simulated environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper detail some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustainable development concerns made renewable energy sources to be increasingly used for electricity distributed generation. However, this is mainly due to incentives or mandatory targets determined by energy policies as in European Union. Assuring a sustainable future requires distributed generation to be able to participate in competitive electricity markets. To get more negotiation power in the market and to get advantages of scale economy, distributed generators can be aggregated giving place to a new concept: the Virtual Power Producer (VPP). VPPs are multi-technology and multisite heterogeneous entities that should adopt organization and management methodologies so that they can make distributed generation a really profitable activity, able to participate in the market. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, in the context of MASCEM, a multi-agent based eletricity market simulator.