987 resultados para Adaptive Architecture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial Intelligence has been applied to dynamic games for many years. The ultimate goal is creating responses in virtual entities that display human-like reasoning in the definition of their behaviors. However, virtual entities that can be mistaken for real persons are yet very far from being fully achieved. This paper presents an adaptive learning based methodology for the definition of players’ profiles, with the purpose of supporting decisions of virtual entities. The proposed methodology is based on reinforcement learning algorithms, which are responsible for choosing, along the time, with the gathering of experience, the most appropriate from a set of different learning approaches. These learning approaches have very distinct natures, from mathematical to artificial intelligence and data analysis methodologies, so that the methodology is prepared for very distinct situations. This way it is equipped with a variety of tools that individually can be useful for each encountered situation. The proposed methodology is tested firstly on two simpler computer versus human player games: the rock-paper-scissors game, and a penalty-shootout simulation. Finally, the methodology is applied to the definition of action profiles of electricity market players; players that compete in a dynamic game-wise environment, in which the main goal is the achievement of the highest possible profits in the market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The forthcoming smart grids are comprised of integrated microgrids operating in grid-connected and isolated mode with local generation, storage and demand response (DR) programs. The proposed model is based on three successive complementary steps for power transaction in the market environment. The first step is characterized as a microgrid’s internal market; the second concerns negotiations between distinct interconnected microgrids; and finally, the third refers to the actual electricity market. The proposed approach is modeled and tested using a MAS framework directed to the study of the smart grids environment, including the simulation of electricity markets. This is achieved through the integration of the proposed approach with the MASGriP (Multi-Agent Smart Grid Platform) system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

20th International Conference on Reliable Software Technologies - Ada-Europe 2015 (Ada-Europe 2015), Madrid, Spain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demo in Workshop on ns-3 (WNS3 2015). 13 to 14, May, 2015. Castelldefels, Spain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poster presented in 28th GI/ITG International Conference on Architecture of Computing Systems (ARCS 2015). 25 to 28, Mar, 2015, Poster Session. Porto, Portugal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RTUWO Advances in Wireless and Optical Communications 2015 (RTUWO 2015). 5-6 Nov Riga, Latvia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel control technique is investigated in the adaptive control of a typical paradigm, an approximately and partially modeled cart plus double pendulum system. In contrast to the traditional approaches that try to build up ”complete” and ”permanent” system models it develops ”temporal” and ”partial” ones that are valid only in the actual dynamic environment of the system, that is only within some ”spatio-temporal vicinity” of the actual observations. This technique was investigated for various physical systems via ”preliminary” simulations integrating by the simplest 1st order finite element approach for the time domain. In 2004 INRIA issued its SCILAB 3.0 and its improved numerical simulation tool ”Scicos” making it possible to generate ”professional”, ”convenient”, and accurate simulations. The basic principles of the adaptive control, the typical tools available in Scicos, and others developed by the authors, as well as the improved simulation results and conclusions are presented in the contribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented at INForum - Simpósio de Informática (INFORUM 2015). 7 to 8, Sep, 2015. Covilhã, Portugal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented at INForum - Simpósio de Informática (INFORUM 2015). 7 to 8, Sep, 2015. Portugal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a decision support methodology for electricity market players’ bilateral contract negotiations. The proposed model is based on the application of game theory, using artificial intelligence to enhance decision support method’s adaptive features. This model is integrated in AiD-EM (Adaptive Decision Support for Electricity Markets Negotiations), a multi-agent system that provides electricity market players with strategic behavior capabilities to improve their outcomes from energy contracts’ negotiations. Although a diversity of tools that enable the study and simulation of electricity markets has emerged during the past few years, these are mostly directed to the analysis of market models and power systems’ technical constraints, making them suitable tools to support decisions of market operators and regulators. However, the equally important support of market negotiating players’ decisions is being highly neglected. The proposed model contributes to overcome the existing gap concerning effective and realistic decision support for electricity market negotiating entities. The proposed method is validated by realistic electricity market simulations using real data from the Iberian market operator—MIBEL. Results show that the proposed adaptive decision support features enable electricity market players to improve their outcomes from bilateral contracts’ negotiations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimization methods have been used in many areas of knowledge, such as Engineering, Statistics, Chemistry, among others, to solve optimization problems. In many cases it is not possible to use derivative methods, due to the characteristics of the problem to be solved and/or its constraints, for example if the involved functions are non-smooth and/or their derivatives are not know. To solve this type of problems a Java based API has been implemented, which includes only derivative-free optimization methods, and that can be used to solve both constrained and unconstrained problems. For solving constrained problems, the classic Penalty and Barrier functions were included in the API. In this paper a new approach to Penalty and Barrier functions, based on Fuzzy Logic, is proposed. Two penalty functions, that impose a progressive penalization to solutions that violate the constraints, are discussed. The implemented functions impose a low penalization when the violation of the constraints is low and a heavy penalty when the violation is high. Numerical results, obtained using twenty-eight test problems, comparing the proposed Fuzzy Logic based functions to six of the classic Penalty and Barrier functions are presented. Considering the achieved results, it can be concluded that the proposed penalty functions besides being very robust also have a very good performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work an adaptive modeling and spectral estimation scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for speech enhancement. Both speech and noise signals are modeled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. The model parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The speech enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. This approach is particularly useful as a pre-processing module for parametric based speech recognition systems that rely on spectral time dependent models. The system performance has been evaluated by a set of human listeners and by spectral distances. In both cases the use of this pre-processing module has led to improved results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work an adaptive filtering scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for Hidden Markov Model (HMM) based speech synthesis quality enhancement. The objective is to improve signal smoothness across HMMs and their related states and to reduce artifacts due to acoustic model's limitations. Both speech and artifacts are modelled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. Themodel parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The quality enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. The system's performance has been evaluated using mean opinion score tests and the proposed technique has led to improved results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objectivo deste trabalho consistiu no desenvolvimento de um protótipo que possibilita a adaptação do conteúdo disponibilizado de acordo com as características pessoais e psicológicas do aluno, aplicado no ensino da Medicina, nomeadamente na componente de Desenho de Estudos da disciplina de Introdução à Medicina. Para o protótipo desenvolvido foi definida uma arquitectura constituída por três componentes: um Modelo de Aluno que engloba as características pessoais e psicológicas do aluno, um Modelo de Domínio constituído por um grafo de conceitos e um Modelo Pedagógico formado pelas regras de adaptação e mecanismos de interação utilizados para obter uma solução adaptativa. Os diferentes componentes desenvolvidos para este protótipo permitem que este apresente as seguintes funcionalidades: Acesso ao conceito adequado, tendo em consideração o nível de conhecimento do aluno; Visualização de conte udos adequados ao estilo de aprendizagem do aluno; Adaptação do percurso do aluno de acordo com os resultados obtidos; Atualização das preferências de aprendizagem, com base no comportamento demonstrado pelo aluno na interação com o sistema. A primeira versão da ferramenta j a foi implementada. No entanto ainda será realizada a avaliação do protótipo em ambiente de aprendizagem, com a maior brevidade possível.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crowdsourcing is evolving into powerful outsourcing options for organizations by providing access to the intellectual capital within a vast knowledge community. Innovation brokering services have emerged to facilitate crowdsourcing projects by connecting up companies with potential solution providers within the wider ‘crowd’. Most existing innovation brokering services are primarily aimed at larger organizations, however, Small and Medium Enterprises (SMEs) offer considerable potential for crowdsourcing activity since they are typically the innovation and employment engines in society; they are typically more nimble and responsive to the business environment than the larger companies. SMEs have very different challenges and needs to larger organizations since they have fewer resources, a more limited knowledge and skill base, and immature management practices. Consequently, innovation brokering for SMEs require considerably more support than for larger organizations. This paper identifies the crowdsourcing innovation brokerage facilities needed by SMEs, and presents an architecture that encourages knowledge sharing, development of community, support in mixing and matching capabilities, and management of stakeholders’ risks. Innovation brokering is emerging as a novel business model that is challenging concepts of the traditional value chain and organizational boundaries.