1000 resultados para Acc rate plankt for
Resumo:
In this study, we present a new multiproxy data set of terrigenous input, marine productivity and sea surface temperature (SST) from 52 surface sediment samples collected along E-W transects in the Pacific sector of the Southern Ocean. Allochtonous terrigenous input was characterized by the distribution of plant wax n-alkanes and soil-derived branched glycerol dialkyl glycerol tetraethers (brGDGTs). 230Th-normalized burial rates of both compound groups were highest close to the potential sources in Australia and New Zealand and are strongly related to lithogenic contents, indicating common sources and transport. Detection of both long-chain n-alkanes and brGDGTs at the most remote sites in the open ocean strongly suggests a primarily eolian transport mechanism to at least 110°W, i.e. by prevailing westerly winds. Two independent organic SST proxies were used, the UK'37 based on long-chain alkenones, and the TEX86 based on isoprenoid GDGTs. Both, UK'37 and TEX86 indices show robust relationships with temperature over a temperature range between 0.5 and 20°C, likely implying different seasonal and regional imprints on the temperature signal. While alkenone-based temperature estimates reliably reflect modern SST even at the low temperature end, large temperature residuals are observed for the polar ocean using the TEX86 index. 230Th-normalized burial rates of alkenones are highest close to the Subtropical Front and are positively related to lithogenic fluxes throughout the study area. In contrast, highest isoGDGT burial south of the Antarctic Polar Front is not related with dust flux but may be largely controlled by diatom blooms, and thus high opal fluxes during austral summer.
Resumo:
We determined phosphorus (P) concentrations in Leg 138 sediment samples from Sites 844, 846, and 851, using a sequential extraction technique to identify the P associated with five sedimentary components. Total concentrations of P (sum of the five components) ranged from 4 to 35 µmol P/g sediment, with mean values relatively similar between the three sites (11, 14, and 12 for Sites 844,846, and 851, respectively). Authigenic/biogenic P was the most important component in terms of percentage of total P (about 75%), with iron-bound P (13%), adsorbed P (2%-9%), and organic P (4%) of secondary importance; detrital P was a minor P sink (1%) in these sediments. Profiles of adsorbed P and iron-bound P show decreasing concentrations with age, indicating that these components have been affected by diagenesis and reorganization of P. A peak in iron-bound P may reflect higher fluxes of hydrothermally derived Fe to eastern equatorial Pacific Ocean sediments from 11 to 8 Ma. Lower detrital P values for western Site 851 reflect a greater distance of this site from a terrigenous source area, compared to that of Sites 844 and 846. Phosphorus mass accumulation rates (P-MARs; units of µmol P/cm**2/k.y.) were calculated using total P concentrations (not including the minor and oceanically unreactive detrital P component) and sedimentation rates and dry-bulk densities averaged over time intervals of 0.5 m.y. P-MARs generally decrease from 17 Ma to the present. Eastern transect Sites 844 and 846 display a decrease in P-MARs from about 30 to 10 in the interval from 17 to 8 Ma, while western transect Site 851 is highly variable during this interval. P-MARs increase to about 45 and stay relatively high from 8 to 6 Ma, then decrease toward the present to some of the lowest values of the record (about 10). The general trend of high P-MARs at about 6 Ma and decreasing values toward the present is correlated with other geochemical and sedimentary trends through this interval and may reflect (1) a change in net sediment and P burial, (2) a reorganization of fluxes with no change of net burial, or (3) a combination of the two.
Resumo:
In this paper, we present new detailed data on the trace metal content of more than 200 shallow polar snow samples collected at various depths in numerous locations mainly in Antarctica and Greenland. The samples were collected in ultraclean plexiglass or teflon tubes from the walls of hand dug pits, using stringent contamination free techniques controlled by severe blank tests. They were then analysed for Na, Mg, K, Ca, Fe, Al, Mn, Pb, Cd, Cu, Zn and Ag in clean room conditions by flameless atomic absorption, after a preconcentration step (by non boiling evaporation in teflon bulbs) which includes dissolving any solid particles by concentrated nitric and hydrofluoric acids. The overall precision on the measured concentrations is of the order of 10 % for all the metals except Pb (20 %) and Cd (35 %), using 95 % confidence limits. The data obtained are compared with those published previously in the literature. Part of these previous data are shown to be erroneously too high, probably because of con-tamination problems both during field collection and analysis.
Resumo:
During the African Humid Period (AHP), much of the modern hyperarid Saharan desert was vegetated and covered with numerous lakes. In marine sediments off northwestern Africa, the AHP is represented by markedly reduced siliciclastic sediment flux between ~ 12.3 and 5.5 ka. Changes in the origin of this terrigenous sediment fraction can be constrained by sediment chemistry and radiogenic isotope tracers. At Ocean Drilling Program (ODP) Site 658, Hole C (20°44.95'N, 18°34.85'W, 2263 mbsl), the neodymium (Nd) isotope composition of terrigenous detritus shows little variability throughout the last 25 kyr, indicating that the contributing geological terranes have not changed appreciably since the last glacial period. In contrast, there were large and abrupt changes in strontium (Sr) isotope ratios and chemical compositions associated with the AHP, during which 87Sr/86Sr ratios were markedly less radiogenic, and sediments show higher chemical indices of alteration. We show that sediment geochemical changes during the AHP cannot be attributed to changes in the source terranes, physical sorting, or intensity of chemical weathering. The low 87Sr/86Sr and high Sr concentrations of AHP-age samples also conflict with the interpretation of increased fine-grained, fluvially derived sediments. We propose that the most significant compositional changes at ODP 658C are due to the addition of an aluminosilicate component that has a highly altered major element signature but is enriched in soluble elements like Sr and magnesium (Mg) compared to aluminum (Al) and has low 87Sr/86Sr relative to local terrigenous source areas. We interpret these characteristics to reflect authigenic sediment supply from extensive North African paleolake basins that were prevalent during the AHP.
Resumo:
Stable carbon isotope ratios in the organic fraction of surface sediments from the Laptev Sea shelf were analyzed in order to study the modern distribution pattern of terrestrial organic matter. The delta13Corg signature of the surface sediments range from -26.6? near the coastal margin to -22.8? in the north towards the outer shelf. Characterizing the possible sources of organic matter by their delta13Corg signature reveals that the terrestrial influence reaches further north in the eastern than in the western Laptev Sea. Downcore records of the delta13Corg, measured on three AMS 14C-dated cores from water depths between 46 and 77 m, specify the spatial and temporal changes in the deposition of terrestrial organic matter on the Laptev Sea shelf during the past 12.7 ka. The major depositional changes of terrestrial organic matter occurred between 11 and 7 ka and comprised the main phase of the southward retreat of the coastline and of the river depocenters due to the postglacial sea level rise.
Resumo:
This dataset includes basic information (location and depth) and major ion chemistry (Sodium, Chloride, Calcium, Nitrate) of snow cores from East Antarctic ice sheet. The snow cores were collected from two different regions - central Dronning Maud Land (cDML) and Princess Elizabeth Land (PEL) during the austral summer of 2008-09.
Resumo:
Composition and accumulation rates of organic carbon in Holocene sediments provided data to calculate an organic carbon budget for the Laptev Sea continental margin. Mean Holocene accumulation rates in the inner Laptev Sea vary between 0.14 and 2.7 g C cm**2/ky; maximum values occur close to the Lena River delta. Seawards, the mean accumulation rates decrease from 0.43 to 0.02 g C cm**2/ky. The organic matter is predominantly of terrigenous origin. About 0.9*10**6 t/year of organic carbon are buried in the Laptev Sea, and 0.25*10**6 t/year on the continental slope. Between about 8.5 and 9 ka, major changes in supply of terrigenous and marine organic carbon occur, related to changes in coastal erosion, Siberian river discharge, and/or Atlantic water inflow along the Eurasian continental margin.
Resumo:
We evaluate phosphorus (P) and biogenic barium (bio-Ba) as nutrient burial and export productivity indicators for the Late Cretaceous and early Paleogene, combining these with calcium carbonate (CaCO3), organic carbon (C), and bulk CaCO3 C isotopes (d13C). Sample ages span 36-71 Ma (~1 sample/0.5 m.y.) for a depth transect of sites in the western North Atlantic (Blake Nose, Ocean Drilling Program Leg 171B, Sites 1052, 1051, and 1050). We use a multitracer approach including redox conditions to investigate export productivity surrounding the global Paleocene d13C maximum (~57 Ma). Reducing conditions render most of the bio-Ba record not useful for export productivity interpretations. P and organic C records indicate that regional nutrient and organic C burial were high at ~61 and ~69 Ma, and low during the Paleocene d13C maximum, a time of proposed global high relative organic C burial. Observed organic C burial changes at Blake Nose cannot explain this C isotope excursion.
Resumo:
The Northern Bay of Bengal (NBoB) is a globally important region for deep-sea organic matter (OM) deposition due to massive fluvial discharge from the Ganges-Brahmaputra-Meghna (G-B-M) rivers and moderate to high surface productivity. Previous studies have focused on carbon burial in turbiditic sediments of the Bengal Fan. However, little is known about the storage of carbon in pelagic and hemipelagic sediments of the Bay of Bengal over millennial time scales. This study presents a comprehensive history of OM origin and fate as well as a quantification of carbon sediment storage in the Eastern Bengal Slope (EBS) during the last 18 ka. Bulk organic proxies (TOC, TIC, TN, d13CTOC, d15NTN) and content and composition of total hydrolysable amino acids (THAA) in a sediment core (SO188-342KL) from the EBS were analyzed. Three periods of high OM accumulation were identified: the Late Glacial (LG), the Bölling/Alleröd (B/A), and the Early Holocene Climatic Optimum (EHCO). Lower eustatic sea level before 15 ka BP allowed a closer connection between the EBS and the fluvial debouch, favoring high terrestrial OM input to the core site. This connection was progressively lost between 15 and 7 ka BP as sea level rose to its present height and terrestrial OM input decreased considerably. Export and preservation of marine OM was stimulated during periods of summer monsoon intensification (B/A and EHCO) as a consequence of higher surface productivity enhanced by cyclonic-eddy nutrient pumping and fluvial nutrient delivery into the photic zone. Changes in the THAA composition indicate that the marine plankton community structure shifted from calcareous-dominated before 13 ka BP to siliceous-dominated afterwards. They also indicate that the relative proportion of marine versus terrestrial OM deposited at site 342KL was primarily driven by relative sea level and enlarged during the Holocene. The ballasting effect of lithogenic particles during periods of high coastal proximity and/or enhanced fluvial discharge promoted the export and preservation of OM. The high organic carbon accumulation rates in the EBS during the LG (18-17 ka BP) were 5-fold higher than at present and comparable to those of glacial upwelling areas. Despite the differences in sediment and OM transport and storage among the Western and Eastern sectors of the NBoB, this region remains important for global carbon sequestration during sea level low-stands. In addition, the summer monsoon was a key promotor of terrestrial and marine OM export to the deep-ocean, highlighting its relevance as regulator of the global carbon budget.
Resumo:
Sediment cores from the Western Mediterranean Sea (WMS) have been analyzed for their bulk element composition, delta18O values of planktic foraminiferal tests, and 87Sr/86Sr and 143Nd/144Nd ratios of their bulk lithogenic components. The investigated time interval comprises the last 215 kyr. Si/Al and Ti/Al ratios as well as radiogenic isotope compositions indicate changes in the provenance of the lithogenic components between glacial intervals and interglacial phases. Comparison with modern data indicates that detrital input from the northwestern and northeastern Sahara may have dominated during interglacial phases. In contrast, during glacial periods the accumulation rate of terrigenous sediment is high and changes in the sediment source areas are evident that may be related to changes in the prevailing atmospheric circulation over the basin and its source areas. A productivity reconstruction based on bio-mediated barium accumulation rates reveals increased surface productivity during glacial phases. Intervals time-equivalent to sapropel formation in the Eastern Mediterranean Sea (EMS) show no changes in surface productivity compared to the intervening intervals. Comparison of the productivity patterns between the WMS and EMS suggests a decoupling during Late Pleistocene sapropel formation and highlights the importance of more localized factors such as the freshwater drainage basin.
Resumo:
As a limiting nutrient to marine life, phosphorus (P) is an effective tracer of today's marine productivity. The distribution of P in marine sediments likewise tracks the history of marine productivity because of its relative insolubility in seawater. CaCO3, biogenic opal, terrigenous sediment, and total P have been measured in cores from nine Pacific sites (Deep Sea Drilling Project (DSDP) 65, 66, 310, 77, 62, 572, 463, 586, and GPC-3) and one subantarctic (DSDP 266) site. These sites were specifically chosen to provide information on biota burial flux changes with time for sedimentary sinks that represent key oceanographic variables, i.e., rate of upwelling, water depth, and carbonate dissolution gradient. The accumulation rates of these components for the last 10 Ma were then calculated from determined core age versus depth plots, core bulk density, and porosity data. The accumulation of P weakly correlates with that of CaCO3, moderately with that of total sediment, and very strongly with carbonate-free accumulation. Two prominent peaks for all components occur at 2-3 Ma and 5-6 Ma, and record the chemical loading of dissolved CaCO3, SiO2, and P from glacially emergent continental shelves. These results indicate that continental shelf phosphorites form during interglacially high sea levels and correspond to low deep-sea P accumulation rates, whereas glacially lowered sea levels allow for shelf bypassing and greater deep-sea P accumulation rates.
Resumo:
Abstract of paper will be inserted here...
Resumo:
This study presents aggradation rates supplemented for the first time by carbonate accumulation rates from Mediterranean cold-water coral sites considering three different regional and geomorphological settings: (i) a cold-water coral ridge (eastern Melilla coral province, Alboran Sea), (ii) a cold-water coral rubble talus deposit at the base of a submarine cliff (Urania Bank, Strait of Sicily) and (iii) a cold-water coral deposit rooted on a predefined topographic high overgrown by cold-water corals (Santa Maria di Leuca coral province, Ionian Sea). The mean aggradation rates of the respective cold-water coral deposits vary between 10 and 530 cm kyr?1 and the mean carbonate accumulation rates range between 8 and 396 g cm?2 kyr?1 with a maximum of 503 g cm?2 kyr?1 reached in the eastern Melilla coral province. Compared to other deep-water depositional environments the Mediterranean cold-water coral sites reveal significantly higher carbonate accumulation rates that were even in the range of the highest productive shallow-water Mediterranean carbonate factories (e.g. Cladocora caespitosa coral reefs). Focusing exclusively on cold-water coral occurrences, the carbonate accumulation rates of the Mediterranean cold-water coral sites are in the lower range of those obtained for the prolific Norwegian coral occurrences, but exhibit much higher rates than the cold-water coral mounds off Ireland. This study clearly indicates that cold-water corals have the potential to act as important carbonate factories and regional carbonate sinks within the Mediterranean Sea. Moreover, the data highlight the potential of cold-water corals to store carbonate with rates in the range of tropical shallow-water reefs. In order to evaluate the contribution of the cold-water coral carbonate factory to the regional or global carbonate/carbon cycle, an improved understanding of the temporal and spatial variability in aggradation and carbonate accumulation rates and areal estimates of the respective regions is needed.
Resumo:
Sediments recovered from a drift deposit lying along the Pacific margin of the Antarctic Peninsula, (ODP Leg 178, Site 1095) provide a physical record of the Antarctic Circumpolar Current since late Miocene time. Determination of the strength of the magnetic fabric, anisotropy of magnetic susceptibility, provides a proxy for current strength. Fabric strength declines throughout the record from high values in the late Miocene; a pronounced step occurs between 5.0 and 5.5 Ma, and values decrease more gradually since about 3.0 Ma. The mass accumulation rate of terrigenous sediment derived from the Antarctic Peninsula indicates stabilization of the Antarctic Peninsula Ice Cap prior to about 8.5 Ma.