921 resultados para Abstractization of diffuse control
Resumo:
Dengue is considered one of the most important vector-borne infection, affecting almost half of the world population with 50 to 100 million cases every year. In this paper, we present one of the simplest models that can encapsulate all the important variables related to vector control of dengue fever. The model considers the human population, the adult mosquito population and the population of immature stages, which includes eggs, larvae and pupae. The model also considers the vertical transmission of dengue in the mosquitoes and the seasonal variation in the mosquito population. From this basic model describing the dynamics of dengue infection, we deduce thresholds for avoiding the introduction of the disease and for the elimination of the disease. In particular, we deduce a Basic Reproduction Number for dengue that includes parameters related to the immature stages of the mosquito. By neglecting seasonal variation, we calculate the equilibrium values of the model’s variables. We also present a sensitivity analysis of the impact of four vector-control strategies on the Basic Reproduction Number, on the Force of Infection and on the human prevalence of dengue. Each of the strategies was studied separately from the others. The analysis presented allows us to conclude that of the available vector control strategies, adulticide application is the most effective, followed by the reduction of the exposure to mosquito bites, locating and destroying breeding places and, finally, larvicides. Current vector-control methods are concentrated on mechanical destruction of mosquitoes’ breeding places. Our results suggest that reducing the contact between vector and hosts (biting rates) is as efficient as the logistically difficult but very efficient adult mosquito’s control.
Biofilms on exposed monumental stones: mechanism of formation and development of new control methods
Resumo:
Within the stone monumental artefacts artistic fountains are extremely favorable to formation of biofilms, giving rise to biodegradation processes related with physical-chemical and visual aspect alterations, because of their particular exposure conditions. Microbial diversity of five fountains (two from Spain and three from Italy) was investigated. It was observed an ample similarity between the biodiversity of monumental stones reported in literature and that one found in studied fountains. Mechanical procedures and toxic chemical products are usually employed to remove such phototrophic patinas. Alternative methods based on natural antifouling substances are recently experimented in the marine sector, due to their very low environmental impact and for the bio settlement prevention on partially immersed structures of ships. In the present work groups of antibiofouling agents (ABAs) were selected from literature for their ability to interfere, at molecular level, with the microbial communication system “quorum sensing”, inhibiting the initial phase of biofilm formation. The efficacy of some natural antibiofoulants agents (ABAs) with terrestrial (Capsaicine - CS, Cinnamaldehyde - CI) and marine origin (Zosteric Acid - ZA, poly-Alkyl Pyridinium Salts – pAPS and Ceramium botryocarpum extract - CBE), incorporated into two commercial coatings (Silres BS OH 100 - S and Wacker Silres BS 290 - W) commonly used in stone conservation procedures were evaluated. The formation of phototrophic biofilms in laboratory conditions (on Carrara marble specimens and Sierra Elvira stone) and on two monumental fountains (Tacca’s Fountain 2 - Florence, Italy and Fountain from Patio de la Lindaraja - Alhambra Palace, Granada, Spain) has been investigated in the presence or absence of these natural antifouling agents. The natural antibiofouling agents, at tested concentrations, demonstrated a certain inhibitory effect. The silane-siloxane based silicone coating (W) mixing with ABAs was more suitable with respect to ethyl silicate coating (S) and proved efficacy against biofilm formation only when incompletely cured. The laboratory results indicated a positive action in inhibiting the patina formation, especially for poly-alkyl pyridinium salts, zosteric acid and cinnamaldehyde, while on site tests revealed a good effect for zosteric acid.
Resumo:
Recently in most of the industrial automation process an ever increasing degree of automation has been observed. This increasing is motivated by the higher requirement of systems with great performance in terms of quality of products/services generated, productivity, efficiency and low costs in the design, realization and maintenance. This trend in the growth of complex automation systems is rapidly spreading over automated manufacturing systems (AMS), where the integration of the mechanical and electronic technology, typical of the Mechatronics, is merging with other technologies such as Informatics and the communication networks. An AMS is a very complex system that can be thought constituted by a set of flexible working stations, one or more transportation systems. To understand how this machine are important in our society let considerate that every day most of us use bottles of water or soda, buy product in box like food or cigarets and so on. Another important consideration from its complexity derive from the fact that the the consortium of machine producers has estimated around 350 types of manufacturing machine. A large number of manufacturing machine industry are presented in Italy and notably packaging machine industry,in particular a great concentration of this kind of industry is located in Bologna area; for this reason the Bologna area is called “packaging valley”. Usually, the various parts of the AMS interact among them in a concurrent and asynchronous way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an hard task. Often, this is the case in large scale systems, organized in a modular and distributed manner. Even if the success of a modern AMS from a functional and behavioural point of view is still to attribute to the design choices operated in the definition of the mechanical structure and electrical electronic architecture, the system that governs the control of the plant is becoming crucial, because of the large number of duties associated to it. Apart from the activity inherent to the automation of themachine cycles, the supervisory system is called to perform other main functions such as: emulating the behaviour of traditional mechanical members thus allowing a drastic constructive simplification of the machine and a crucial functional flexibility; dynamically adapting the control strategies according to the different productive needs and to the different operational scenarios; obtaining a high quality of the final product through the verification of the correctness of the processing; addressing the operator devoted to themachine to promptly and carefully take the actions devoted to establish or restore the optimal operating conditions; managing in real time information on diagnostics, as a support of the maintenance operations of the machine. The kind of facilities that designers can directly find on themarket, in terms of software component libraries provides in fact an adequate support as regard the implementation of either top-level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion control, fieldbus-based interconnection of remote smart devices. What is still lacking is a reference framework comprising a comprehensive set of highly reusable logic control components that, focussing on the cross-cutting functionalities characterizing the automation domain, may help the designers in the process of modelling and structuring their applications according to the specific needs. Historically, the design and verification process for complex automated industrial systems is performed in empirical way, without a clear distinction between functional and technological-implementation concepts and without a systematic method to organically deal with the complete system. Traditionally, in the field of analog and digital control design and verification through formal and simulation tools have been adopted since a long time ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynamics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics equipments. Moving to the field of logic control, typical for industrial manufacturing automation, the design and verification process is approached in a completely different way, usually very “unstructured”. No clear distinction between functions and implementations, between functional architectures and technological architectures and platforms is considered. Probably this difference is due to the different “dynamical framework”of logic control with respect to analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace time-driven dynamics; hence most of the formal and mathematical tools of analog/digital control cannot be directly migrated to logic control to enlighten the distinction between functions and implementations. In addition, in the common view of application technicians, logic control design is strictly connected to the adopted implementation technology (relays in the past, software nowadays), leading again to a deep confusion among functional view and technological view. In Industrial automation software engineering, concepts as modularity, encapsulation, composability and reusability are strongly emphasized and profitably realized in the so-calledobject-oriented methodologies. Industrial automation is receiving lately this approach, as testified by some IEC standards IEC 611313, IEC 61499 which have been considered in commercial products only recently. On the other hand, in the scientific and technical literature many contributions have been already proposed to establish a suitable modelling framework for industrial automation. During last years it was possible to note a considerable growth in the exploitation of innovative concepts and technologies from ICT world in industrial automation systems. For what concerns the logic control design, Model Based Design (MBD) is being imported in industrial automation from software engineering field. Another key-point in industrial automated systems is the growth of requirements in terms of availability, reliability and safety for technological systems. In other words, the control system should not only deal with the nominal behaviour, but should also deal with other important duties, such as diagnosis and faults isolations, recovery and safety management. Indeed, together with high performance, in complex systems fault occurrences increase. This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems, in complex systems such as AMS, together with reliable mechanical elements, an increasing number of electronic devices are also present, that are more vulnerable by their own nature. The diagnosis problem and the faults isolation in a generic dynamical system consists in the design of an elaboration unit that, appropriately processing the inputs and outputs of the dynamical system, is also capable of detecting incipient faults on the plant devices, reconfiguring the control system so as to guarantee satisfactory performance. The designer should be able to formally verify the product, certifying that, in its final implementation, it will perform itsrequired function guarantying the desired level of reliability and safety; the next step is that of preventing faults and eventually reconfiguring the control system so that faults are tolerated. On this topic an important improvement to formal verification of logic control, fault diagnosis and fault tolerant control results derive from Discrete Event Systems theory. The aimof this work is to define a design pattern and a control architecture to help the designer of control logic in industrial automated systems. The work starts with a brief discussion on main characteristics and description of industrial automated systems on Chapter 1. In Chapter 2 a survey on the state of the software engineering paradigm applied to industrial automation is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the new concept of Generalized Actuator showing its benefits, while in Chapter 4 this architecture is refined using a novel entity, the Generalized Device in order to have a better reusability and modularity of the control logic. In Chapter 5 a new approach will be present based on Discrete Event Systems for the problemof software formal verification and an active fault tolerant control architecture using online diagnostic. Finally conclusive remarks and some ideas on new directions to explore are given. In Appendix A are briefly reported some concepts and results about Discrete Event Systems which should help the reader in understanding some crucial points in chapter 5; while in Appendix B an overview on the experimental testbed of the Laboratory of Automation of University of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and chapter 5. In Appendix C some components model used in chapter 5 for formal verification are reported.
Resumo:
The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.
Resumo:
Weaning is an important and complex step involving many stresses that interfere deeply with feed intake, gastro-intestinal tract (GIT) development and adaptation to the weaning diet in young pigs. The health of the pig at weaning, its nutrition in the immediate post-weaning period, and the physical, microbiological and psychological environment are all factors that interact to determine food intake and subsequent growth. GIT disorders, infections and diarrhoea increase at the time of weaning, in fact pathogens such as enterotoxigenic Escherichia coli (ETEC) are major causes of mucosal damage in post-weaning disease contributing to diarrhoea in suckling and post-weaned pigs. The European ban in 2006 put on antibiotic growth promoters (AGP) has stimulated research on the mechanisms of GIT disorders and on nutritional approaches for preventing or reducing such disturbances avoiding AGPs. Concerning these aspects here are presented five studies based on the interplay among nutrition, genomic, immunity and physiology with the aim to clarify some of these problematic issues around weaning period in piglets. The first three evaluate the effects of diets threonine or tryptophan enriched on gut defence and health as possible alternatives to AGP in the gut. The fourth is focused on the possible immunological function related with the development of the stomach. The fifth is a pilot study on the gastric sensing and orexygenic signal given by fasting or re-feeding conditions. Although some results are controversial, it appears that both tryptophan and threonine supplementation in weaning diets have a preventive role in E.coli PWD and favorable effects in the gut especially in relation to ETEC susceptible genotype. While the stomach is believed as almost aseptic organ, it shows an immune activity related with the mucosal maturation. Moreover it shows an orexygenic role of both oxyntic mucosa and pyloric mucosa, and its possible relation with nutrient sensing stimuli.
Resumo:
This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.
Resumo:
Il fenomeno dello scattering diffuso è stato oggetto di numerosi studi nell’arco degli ultimi anni, questo grazie alla sua rilevanza nell’ambito della propagazione elettromagnetica così come in molti altri campi di applicazione (remote sensing, ottica, fisica, etc.), ma la compresione completa di questo effetto è lungi dall’essere raggiunta. Infatti la complessità nello studio e nella caratterizzazione della diffusione deriva dalla miriade di casistiche ed effetti che si possono incontrare in un ambiente di propagazione reale, lasciando intuire la necessità di trattarne probabilisticamente il relativo contributo. Da qui nasce l’esigenza di avere applicazioni efficienti dal punto di vista ingegneristico che coniughino la definizione rigorosa del fenomeno e la conseguente semplificazione per fini pratici. In tale visione possiamo descrivere lo scattering diffuso come la sovrapposizione di tutti quegli effetti che si scostano dalle classiche leggi dell’ottica geometrica (riflessione, rifrazione e diffrazione) che generano contributi del campo anche in punti dello spazio e direzioni in cui teoricamente, per oggetti lisci ed omogenei, non dovrebbe esserci alcun apporto. Dunque l’effetto principale, nel caso di ambiente di propagazione reale, è la diversa distribuzione spaziale del campo rispetto al caso teorico di superficie liscia ed omogenea in congiunzione ad effetti di depolarizzazione e redistribuzione di energia nel bilancio di potenza. Perciò la complessità del fenomeno è evidente e l’obiettivo di tale elaborato è di proporre nuovi risultati che permettano di meglio descrivere lo scattering diffuso ed individuare altresì le tematiche sulle quali concentrare l’attenzione nei lavori futuri. In principio è stato quindi effettuato uno studio bibliografico così da identificare i modelli e le teorie esistenti individuando i punti sui quali riflettere maggiormente; nel contempo si sono analizzate le metodologie di caratterizzazione della permittività elettrica complessa dei materiali, questo per valutare la possibilità di ricavare i parametri da utilizzare nelle simulazioni utilizzando il medesimo setup di misura ideato per lo studio della diffusione. Successivamente si è realizzato un setup di simulazione grazie ad un software di calcolo elettromagnetico (basato sul metodo delle differenze finite nel dominio del tempo) grazie al quale è stato possibile analizzare la dispersione tridimensionale dovuta alle irregolarità del materiale. Infine è stata condotta una campagna di misure in camera anecoica con un banco sperimentale realizzato ad-hoc per effettuare una caratterizzazione del fenomeno di scattering in banda larga.
Resumo:
This thesis is focused on Smart Grid applications in medium voltage distribution networks. For the development of new applications it appears useful the availability of simulation tools able to model dynamic behavior of both the power system and the communication network. Such a co-simulation environment would allow the assessment of the feasibility of using a given network technology to support communication-based Smart Grid control schemes on an existing segment of the electrical grid and to determine the range of control schemes that different communications technologies can support. For this reason, is presented a co-simulation platform that has been built by linking the Electromagnetic Transients Program Simulator (EMTP v3.0) with a Telecommunication Network Simulator (OPNET-Riverbed v18.0). The simulator is used to design and analyze a coordinate use of Distributed Energy Resources (DERs) for the voltage/var control (VVC) in distribution network. This thesis is focused control structure based on the use of phase measurement units (PMUs). In order to limit the required reinforcements of the communication infrastructures currently adopted by Distribution Network Operators (DNOs), the study is focused on leader-less MAS schemes that do not assign special coordinating rules to specific agents. Leader-less MAS are expected to produce more uniform communication traffic than centralized approaches that include a moderator agent. Moreover, leader-less MAS are expected to be less affected by limitations and constraint of some communication links. The developed co-simulator has allowed the definition of specific countermeasures against the limitations of the communication network, with particular reference to the latency and loss and information, for both the case of wired and wireless communication networks. Moreover, the co-simulation platform has bee also coupled with a mobility simulator in order to study specific countermeasures against the negative effects on the medium voltage/current distribution network caused by the concurrent connection of electric vehicles.
Resumo:
BACKGROUND One aspect of a multidimensional approach to understanding asthma as a complex dynamic disease is to study how lung function varies with time. Variability measures of lung function have been shown to predict response to beta(2)-agonist treatment. An investigation was conducted to determine whether mean, coefficient of variation (CV) or autocorrelation, a measure of short-term memory, of peak expiratory flow (PEF) could predict loss of asthma control following withdrawal of regular inhaled corticosteroid (ICS) treatment, using data from a previous study. METHODS 87 adult patients with mild to moderate asthma who had been taking ICS at a constant dose for at least 6 months were monitored for 2-4 weeks. ICS was then withdrawn and monitoring continued until loss of control occurred as per predefined criteria. Twice-daily PEF was recorded during monitoring. Associations between loss of control and mean, CV and autocorrelation of morning PEF within 2 weeks pre- and post-ICS withdrawal were assessed using Cox regression analysis. Predictive utility was assessed using receiver operator characteristics. RESULTS 53 out of 87 patients had sufficient PEF data over the required analysis period. The mean (389 vs 370 l/min, p<0.0001) and CV (4.5% vs 5.6%, p=0.007) but not autocorrelation of PEF changed significantly from prewithdrawal to postwithdrawal in subjects who subsequently lost control, and were unaltered in those who did not. These changes were related to time to loss of control. CV was the most consistent predictor, with similar sensitivity and sensitivity to exhaled nitric oxide. CONCLUSION A simple, easy to obtain variability measure of daily lung function such as the CV may predict loss of asthma control within the first 2 weeks of ICS withdrawal.
Resumo:
Purpose: To prospectively determine on T2 cartilage maps the effect of unloading during a clinical magnetic resonance (MR) examination in the postoperative follow-up of patients after matrix-associated autologous chondrocyte transplantation (MACT) of the knee joint. Materials and Methods: Ethical approval for this study was provided by the local ethics commission, and written informed consent was obtained. Thirty patients (mean age, 35.4 years +/- 10.5) with a mean postoperative follow-up period of 29.1 months +/- 24.4 were enrolled. A multiecho spin-echo T2-weighted sequence was performed at the beginning (early unloading) and end (late unloading) of the MR examination, with an interval of 45 minutes. Mean and zonal region of interest T2 measurements were obtained in control cartilage and cartilage repair tissue. Statistical analysis of variance was performed. Results: The change in T2 values of control cartilage (early unloading, 50.2 msec +/- 8.4; late unloading, 51.3 msec +/- 8.5) was less pronounced than the change in T2 values of cartilage repair tissue (early unloading, 51.8 msec +/- 11.7; late unloading, 56.1 msec +/- 14.4) (P = .024). The difference between control cartilage and cartilage repair tissue was not significant for early unloading (P = .314) but was significant for late unloading (P = .036). Zonal T2 measurements revealed a higher dependency on unloading for the superficial cartilage layer. Conclusion: Our results suggest that T2 relaxation can be used to assess early and late unloading values of articular cartilage in a clinical setting and that the time point of the quantitative T2 measurement affects the differentiation between native and abnormal articular cartilage. (c) RSNA, 2010.
Resumo:
To determine the local control and complication rates for children with papillary and/or macular retinoblastoma progressing after chemotherapy and undergoing stereotactic radiotherapy (SRT) with a micromultileaf collimator.