942 resultados para Abiotic stress tolerance


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An Arabidopsis thaliana cDNA clone encoding a plant uncoupling mitochondrial protein (AtPUMP1) was overexpressed in transgenic tobacco plants. Analysis of the AtPUMP1 mRNA content in the transgenic lines, determined by Northern blot, revealed variable levels of transgene expression. Antibody probing of Western blots of mitochondrial proteins from three independent transgenic lines showed significant accumulation of AtPUMP1 in this organelle. Overproduction of AtPUMP1 in transgenic tobacco plants led to a significant increase in tolerance to oxidative stress promoted by exogenous hydrogen peroxide as compared to wild-type control plants. These results provide the first biological evidence for a role of PUMP in protection of plant cells against oxidative stress damage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Managed environments in the form of well watered and water stressed trials were performed to study the genetic basis of grain yield and stay green in sorghum with the objective of validating previously detected QTL. As variations in phenology and plant height may influence QTL detection for the target traits, QTL for flowering time and plant height were introduced as cofactors in QTL analyses for yield and stay green. All but one of the flowering time QTL were detected near yield and stay green QTL. Similar co-localization was observed for two plant height QTL. QTL analysis for yield, using flowering time/plant height cofactors, led to yield QTL on chromosomes 2, 3, 6, 8 and 10. For stay green, QTL on chromosomes 3, 4, 8 and 10 were not related to differences in flowering time/plant height. The physical positions for markers in QTL regions projected on the sorghum genome suggest that the previously detected plant height QTL, Sb-HT9-1, and Dw2, in addition to the maturity gene, Ma5, had a major confounding impact on the expression of yield and stay green QTL. Co-localization between an apparently novel stay green QTL and a yield QTL on chromosome 3 suggests there is potential for indirect selection based on stay green to improve drought tolerance in sorghum. Our QTL study was carried out with a moderately sized population and spanned a limited geographic range, but still the results strongly emphasize the necessity of corrections for phenology in QTL mapping for drought tolerance traits in sorghum.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Among abiotic stresses, high salinity stress is the most severe environmental stress. High salinity exerts its negative impact mainly by disrupting the ionic and osmotic equilibrium of the cell. In saline soils, high levels of sodium ions lead to plant growth inhibition and even death. Salt tolerance in plants is a multifarious phenomenon involving a variety of changes at molecular, organelle, cellular, tissue as well as whole plant level. In addition, salt tolerant plants show a range of adaptations not only in morphological or structural features but also in metabolic and physiological processes that enable them to survive under extreme saline environments. The main objectives of my dissertation were understanding the main physiological and biomolecular features of plant responses to salinity in different genotypes of horticultural crops that are belonging to different families Solanaceae (tomato) and Cucurbitaceae (melon) and Brassicaceae (cabbage and radish). Several aspects of crop responses to salinity have been addressed with the final aim of combining elements of functional stress response in plants by using several ways for the assessment of plant stress perception that ranging from destructive measurements (eg. leaf area, relative growth rate, leaf area index, and total plant fresh and dry weight), to physiological determinations (eg. stomatal conductance, leaf gas exchanges, water use efficiency, and leaf water relation), to the determination of metabolite accumulation in plant tissue (eg. Proline and protein) as well as evaluation the role of enzymatic antioxidant capacity assay in scavenging reactive oxygen species that have been generated under salinized condition, and finally assessing the gene induction and up-down regulation upon salinization (eg. SOS pathway).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Durum wheat is the second most important wheat species worldwide and the most important crop in several Mediterranean countries including Italy. Durum wheat is primarily grown under rainfed conditions where episodes of drought and heat stress are major factors limiting grain yield. The research presented in this thesis aimed at the identification of traits and genes that underlie root system architecture (RSA) and tolerance to heat stress in durum wheat, in order to eventually contribute to the genetic improvement of this species. In the first two experiments we aimed at the identification of QTLs for root trait architecture at the seedling level by studying a bi-parental population of 176 recombinant inbred lines (from the cross Meridiano x Claudio) and a collection of 183 durum elite accessions. Forty-eight novel QTLs for RSA traits were identified in each of the two experiments, by means of linkage- and association mapping-based QTL analysis, respectively. Important QTLs controlling the angle of root growth in the seedling were identified. In a third experiment, we investigated the phenotypic variation of root anatomical traits by means of microscope-based analysis of root cross sections in 10 elite durum cultivars. The results showed the presence of sizeable genetic variation in aerenchyma-related traits, prompting for additional studies aimed at mapping the QTLs governing such variation and to test the role of aerenchyma in the adaptive response to abiotic stresses. In the fourth experiment, an association mapping experiment for cell membrane stability at the seedling stage (as a proxy trait for heat tolerance) was carried out by means of association mapping. A total of 34 QTLs (including five major ones), were detected. Our study provides information on QTLs for root architecture and heat tolerance which could potentially be considered in durum wheat breeding programs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Important food crops like rice are constantly exposed to various stresses that can have devastating effect on their survival and productivity. Being sessile, these highly evolved organisms have developed elaborate molecular machineries to sense a mixture of stress signals and elicit a precise response to minimize the damage. However, recent discoveries revealed that the interplay of these stress regulatory and signaling molecules is highly complex and remains largely unknown. In this work, we conducted large scale analysis of differential gene expression using advanced computational methods to dissect regulation of stress response which is at the heart of all molecular changes leading to the observed phenotypic susceptibility. One of the most important stress conditions in terms of loss of productivity is drought. We performed genomic and proteomic analysis of epigenetic and miRNA mechanisms in regulation of drought responsive genes in rice and found subsets of genes with striking properties. Overexpressed genesets included higher number of epigenetic marks, miRNA targets and transcription factors which regulate drought tolerance. On the other hand, underexpressed genesets were poor in above features but were rich in number of metabolic genes with multiple co-expression partners contributing majorly towards drought resistance. Identification and characterization of the patterns exhibited by differentially expressed genes hold key to uncover the synergistic and antagonistic components of the cross talk between stress response mechanisms. We performed meta-analysis on drought and bacterial stresses in rice and Arabidopsis, and identified hundreds of shared genes. We found high level of conservation of gene expression between these stresses. Weighted co-expression network analysis detected two tight clusters of genes made up of master transcription factors and signaling genes showing strikingly opposite expression status. To comprehensively identify the shared stress responsive genes between multiple abiotic and biotic stresses in rice, we performed meta-analyses of microarray studies from seven different abiotic and six biotic stresses separately and found more than thirteen hundred shared stress responsive genes. Various machine learning techniques utilizing these genes classified the stresses into two major classes' namely abiotic and biotic stresses and multiple classes of individual stresses with high accuracy and identified the top genes showing distinct patterns of expression. Functional enrichment and co-expression network analysis revealed the different roles of plant hormones, transcription factors in conserved and non-conserved genesets in regulation of stress response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study brings new insights on the hydrogen assisted stress corrosion on damage tolerance of a high-strength duplex stainless steel wire which concerns its potential use as active reinforcement for concrete prestressing. The adopted procedure was to experimentally state the effect of hydrogen on the damage tolerance of cylindrical smooth and precracked wire specimens exposed to stress corrosion cracking using the aggressive medium of the standard test developed by FIP (International Prestressing Federation). Stress corrosion testing, mechanical fracture tests and scanning electron microscopy analysis allowed the damage assessment, and explain the synergy between mechanical loading and environment action on the failure sequence of the wire. In presence of previous damage, hydrogen affects the wire behavior in a qualitative sense, consistently to the fracture anisotropy attributable to cold drawing, but it does not produce quantitative changes since the steel fully preserves its damage tolerance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Antarctic bryophyte communities presently tolerate physiological extremes in water availability, surviving both desiccation and submergence events. We investigated the relative ability of three Antarctic moss species to tolerate physiological extremes in water availability and identified physiological, morphological, and biochemical characteristics that assist species performance under such conditions. Tolerance of desiccation and submergence was investigated using chlorophyll fluorescence during a series of field- and laboratory-based water stress events. Turf water retention and degree of natural habitat submergence were determined from gametophyte shoot size and density, and delta C-13 signatures, respectively. Finally, compounds likely to assist membrane structure and function during desiccation events (fatty acids and soluble carbohydrates) were determined. The results of this study show significant differences in the performance of the three study species under contrasting water stress events. The results indicate that the three study species occupy distinctly different ecological niches with respect to water relations, and provide a physiological explanation for present species distributions. The poor tolerance of submergence seen in Ceratodon purpureus helps explain its restriction to drier sites and conversely, the low tolerance of desiccation and high tolerance of submergence displayed by the endemic Grimmia antarctici is consistent with its restriction to wet habitats. Finally the flexible response observed for Bryum pseudotriquetrum is consistent with its co-occurrence with the other two species across the bryophyte habitat spectrum. The likely effects of future climate change induced shifts in water availability are discussed with respect to future community dynamics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coralAcropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate change scenarios.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Common bean (Phaseolus vulgaris L.) is the most important legume crop in the world, providing low-cost, high quality protein, minerals and dietary fiber for human nutrition. The crop was originated from diversity centers in America and exhibits adaptation abilities to different environmental conditions, including soil with low pH. Acid soils occupy 30% of the agro ecosystem areas in the world. In Madeira, acid Andosols and unsatured Cambisols are the dominant groups of soils. Generally, under acidic and infertile conditions, besides of H+ toxicity, soluble aluminium (Al) is the most important abiotic factor limiting plant development and crop productivity. In the field, the hidden roots are also affected and the reduction of root growth under Al stress can be clearly observed in early stages. Seedlings of fifty bean accessions from the Archipelago of Madeira were tested under controlled conditions in the presence of 50 mM Al at pH 4.4. In general, the tested germplasm appeared to be sensitive or very sensitive to Al toxicity. However, fifteen traditional cultivars clearly exhibited elevated Al-tolerance, with an average root relative elongation (RRE) exceeding 50%, while top six accessions surpassed the 60% RRE mark. The Madeira bean germplasm is a valuable resource for sustainable crop production in acid soils and it could be used as parental lines in breeding programs aimed for Al tolerance in common beans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Common bean (Phaseolus vulgaris L.) is the most important legume crop in the world, providing low-cost, high quality protein, minerals and dietary fiber for human nutrition. The crop was originated from diversity centers in America and exhibits adaptation abilities to different environmental conditions, including soil with low pH. Acid soils occupy 30% of the agro ecosystem areas in the world. In Madeira, acid Andosols and unsatured Cambisols are the dominant groups of soils. Generally, under acidic and infertile conditions, besides of H+ toxicity, soluble aluminium (Al) is the most important abiotic factor limiting plant development and crop productivity. In the field, the hidden roots are also affected and the reduction of root growth under Al stress can be clearly observed in early stages. Seedlings of fifty bean accessions from the Archipelago of Madeira were tested under controlled conditions in the presence of 50 mM Al at pH 4.4. In general, the tested germplasm appeared to be sensitive or very sensitive to Al toxicity. However, fifteen traditional cultivars clearly exhibited elevated Al-tolerance, with an average root relative elongation (RRE) exceeding 50%, while top six accessions surpassed the 60% RRE mark. The Madeira bean germplasm is a valuable resource for sustainable crop production in acid soils and it could be used as parental lines in breeding programs aimed for Al tolerance in common beans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bananas are susceptible to a diverse range of biotic and abiotic stresses, many of which cause serious production constraints worldwide. One of the most destructive banana diseases is Fusarium wilt caused by the soil-borne fungus, Fusarium oxysporum f. sp. cubense (Foc). No effective control strategy currently exists for this disease which threatens global banana production. Although disease resistance exists in some wild bananas, attempts to introduce resistance into commercially acceptable bananas by conventional breeding have been hampered by low fertility, long generation times and association of poor agronomical traits with resistance genes. With the advent of reliable banana transformation protocols, molecular breeding is now regarded as a viable alternative strategy to generate disease-resistant banana plants. Recently, a novel strategy involving the expression of anti-apoptosis genes in plants was shown to result in resistance against several necrotrophic fungi. Further, the transgenic plants showed increased resistance to a range of abiotic stresses. In this thesis, the use of anti-apoptosis genes to generate transgenic banana plants with resistance to Fusarium wilt was investigated. Since water stress is an important abiotic constraint to banana production, the resistance of the transgenic plants to water stress was also examined. Embryogenic cell suspensions (ECS) of two commercially important banana cultivars, Grand Naine (GN) and Lady Finger (LF), were transformed using Agrobacterium with the anti-apoptosis genes, Bcl-xL, Bcl-xL G138A, Ced-9 and Bcl- 2 3’ UTR. An interesting, and potentially important, outcome was that the use of anti-apoptosis genes resulted in up to a 50-fold increase in Agrobacterium-mediated transformation efficiency of both LF and GN cells over vector controls. Regenerated plants were subjected to a complete molecular characterisation in order to detect the presence of the transgene (PCR), transcript (RT-PCR) and gene product (Western blot) and to determine the gene copy number (Southern blot). A total of 36 independently-transformed GN lines (8 x Bcl-xL, 5 x Bcl-xL G138A, 15 x Ced-9 and 8 x Bcl-2 3’ UTR) and 41 independently-transformed LF lines (8 x Bcl-xL, 7 x BclxL G138A, 13 x Ced-9 and 13 x Bcl-2 3’ UTR) were identified. The 41 transgenic LF lines were multiplied and clones from each line were acclimatised and grown under glasshouse conditions for 8 weeks to allow monitoring for phenotypic abnormalities. Plants derived from 3 x Bcl-xL, 2 x Ced-9 and 5 x Bcl-2 3’ UTR lines displayed a variety of aberrant phenotypes. However, all but one of these abnormalities were off-types commonly observed in tissue-cultured, non-transgenic banana plants and were therefore unlikely to be transgene-related. Prior to determining the resistance of the transgenic plants to Foc race 1, the apoptotic effects of the fungus on both wild-type and Bcl-2 3’ UTR-transgenic LF banana cells were investigated using rapid in vitro root assays. The results from these assays showed that apoptotic-like cell death was elicited in wild-type banana root cells as early as 6 hours post-exposure to fungal spores. In contrast, these effects were attenuated in the root cells of Bcl-2 3’ UTR-transgenic lines that were exposed to fungal spores. Thirty eight of the 41 transgenic LF lines were subsequently assessed for resistance to Foc race 1 in small-plant glasshouse bioassays. To overcome inconsistencies in rating the internal (vascular discolouration) disease symptoms, a MatLab-based computer program was developed to accurately and reliably assess the level of vascular discolouration in banana corms. Of the transgenic LF banana lines challenged with Foc race 1, 2 x Bcl-xL, 3 x Ced-9, 2 x Bcl-2 3’ UTR and 1 x Bcl-xL G138A-transgenic line were found to show significantly less external and internal symptoms than wild-type LF banana plants used as susceptible controls at 12 weeks post-inoculation. Of these lines, Bcl-2 3’ UTR-transgenic line #6 appeared most resistant, displaying very mild symptoms similar to the wild-type Cavendish banana plants that were included as resistant controls. This line remained resistant for up to 23 weeks post-inoculation. Since anti-apoptosis genes have been shown to confer resistance to various abiotic stresses in other crops, the ability of these genes to confer resistance against water stress in banana was also investigated. Clonal plants derived from each of the 38 transgenic LF banana plants were subjected to water stress for a total of 32 days. Several different lines of transgenic plants transformed with either Bcl-xL, Bcl-xL G138A, Ced-9 or Bcl-2 3’ UTR showed a delay in visual water stress symptoms compared with the wild-type control plants. These plants all began producing new growth from the pseudostem following daily rewatering for one month. In an attempt to determine whether the protective effect of anti-apoptosis genes in transgenic banana plants was linked with reactive oxygen species (ROS)-associated programmed cell death (PCD), the effect of the chloroplast-targeting, ROS-inducing herbicide, Paraquat, on wild-type and transgenic LF was investigated. When leaf discs from wild-type LF banana plants were exposed to 10 ìM Paraquat, complete decolourisation occurred after 48 hours which was confirmed to be associated with cell death and ROS production by trypan blue and 3,3-diaminobenzidine (DAB) staining, respectively. When leaf discs from the transgenic lines were exposed to Paraquat, those derived from some lines showed a delay in decolourisation, suggesting only a weak protective effect from the transgenes. Finally, the protective effect of anti-apoptosis genes against juglone, a ROS-inducing phytotoxin produced by the causal agent of black Sigatoka, Mycosphaerella fijiensis, was investigated. When leaf discs from wild-type LF banana plants were exposed to 25 ppm juglone, complete decolourisation occurred after 48 hours which was again confirmed to be associated with cell death and ROS production by trypan blue and DAB staining, respectively. Further, TdT-mediated dUTP nick-end labelling (TUNEL) assays on these discs suggested that the cell death was apoptotic. When leaf discs from the transgenic lines were exposed to juglone, discs from some lines showed a clear delay in decolourisation, suggesting a protective effect. Whether these plants are resistant to black Sigatoka is unknown and will require future glasshouse and field trials. The work presented in this thesis provides the first report of the use of anti-apoptosis genes as a strategy to confer resistance to Fusarium wilt and water stress in a nongraminaceous monocot, banana. Such a strategy may be exploited to generate resistance to necrotrophic pathogens and abiotic stresses in other economically important crop plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Explosive ordnance disposal (EOD) technicians are required to wear protective clothing to protect themselves from the threat of overpressure, fragmentation, impact and heat. The engineering requirements to minimise these threats results in an extremely heavy and cumbersome clothing ensemble that increases the internal heat generation of the wearer, while the clothing’s thermal properties reduce heat dissipation. This study aimed to evaluate the heat strain encountered wearing EOD protective clothing in simulated environmental extremes across a range of differing work intensities. Eight healthy males [age 25±6 years (mean ± sd), height 180±7 cm, body mass 79±9 kg, V˙O2max 57±6 ml.kg−1.min−1] undertook nine trials while wearing an EOD9 suit (weighing 33.4 kg). The trials involved walking on a treadmill at 2.5, 4 and 5.5 km⋅h−1 at each of the following environmental conditions, 21, 30 and 37°C wet bulb globe temperature (WBGT) in a randomised controlled crossover design. The trials were ceased if the participants’ core temperature reached 39°C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to fatigue/nausea. Tolerance times ranged from 10–60 minutes and were significantly reduced in the higher walking speeds and environmental conditions. In a total of 15 trials (21%) participants completed 60 minutes of walking; however, this was predominantly at the slower walking speeds in the 21°C WBGT environment. Of the remaining 57 trials, 50 were ceased, due to attainment of 90% maximal heart rate. These near maximal heart rates resulted in moderate-high levels of physiological strain in all trials, despite core temperature only reaching 39°C in one of the 72 trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the physiological tolerance times when wearing explosive and chemical (>35kg) personal protective equipment (PPE) in simulated environmental extremes across a range of differing work intensities. Twelve healthy males undertook nine trials which involved walking on a treadmill at 2.5, 4 and 5.5 km.h-1 in the following environmental conditions, 21, 30 and 37 °C wet bulb globe temperature (WBGT). Participants exercised for 60 min or until volitional fatigue, core temperature reached 39 °C, or heart rate exceeded 90% of maximum. Tolerance time, core temperature, skin temperature, mean body temperature, heart rate and body mass loss were measured. Exercise time was reduced in the higher WBGT environments (WBGT37tolerance times are influenced by the external environment and workload, and that cardiovascular strain is the limiting factor to work tolerance when wearing this heavy multi layered PPE.