989 resultados para ARNTL Transcription Factors


Relevância:

90.00% 90.00%

Publicador:

Resumo:

REST is a zinc-finger transcription factor implicated in several processes such as maintenance of embryonic stem cell pluripotency and regulation of mitotic fidelity in non-neuronal cells [Chong et al., 1995]. The gene encodes for a 116-kDa protein that acts as a molecular platform for co-repressors recruitment and promotes modifications of DNA and histones [Ballas, 2005]. REST showed different apparent molecular weights, consistent with the possible presence of post-translational modifications [Lee et al., 2000]. Among these the most common is glycosylation, the covalent attachment of carbohydrates during or after protein synthesis [Apweiler et al., 1999] My thesis has ascertained, for the first time, the presence of glycan chians in the transcription factor REST. Through enzymatic deglycosylation and MS, oligosaccharide composition of glycan chains was evaluated: a complex mixture of glycans, composed of N-acetylgalactosamine, galactose and mannose, was observed thus confirming the presence of O- and N-linked glycan chains. Glycosylation site mapping was done using a 18O-labeling method and MS/MS and twelve potential N-glycosylation sites were identified. The most probable glycosylation target residues were mutated through site-directed mutagenesis and REST mutants were expressed in different cell lines. Variations in the protein molecular weight and mutant REST ability to bind the RE-1 sequence were analyzed. Gene reporter assays showed that, altogether, removal of N-linked glycan chains causes loss of transcriptional repressor function, except for mutant N59 which showed a slight residual repressor activity in presence of IGF-I. Taken togheter these results demonstrate the presence of complex glycan chians in the transcription factor REST: I have depicted their composition, started defining their position on the protein backbone and identified their possible role in the transcription factor functioning. Considering the crucial role of glycosylation and transcription factors activity in the aetiology of many diseases, any further knowledge could find important and interesting pharmacological application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transcription factors play a key role in the commitment of hematopoietic stem cells to differentiate into specific lineages [78]. This is particularly important in that a block in terminal differentiation is the key contributing factor in acute leukemias. This general theme of the role of transcription factors in differentiation may also extend to other tissues, both in terms of normal development and cancer. Consistent with the role of transcription factors in hematopoietic lineage commitment is the frequent finding of aberrations in transcription factors in AML patients. Here, we intend to review recent findings on aberrations in lineage-restricted transcription factors as observed in patients with acute myeloid leukemia (AML).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The known participation of Kruppel-like transcription factors (KLF) in cellular differentiation prompted us to investigate their expression in acute myeloid leukemia (AML) blast cells that are typically blocked in their differentiation. We determined the expression patterns of KLFs with a putative role in myeloid differentiation in a large cohort of primary AML patient samples, CD34+ progenitor cells and granulocytes from healthy donors. We found that KLF2, KLF3, KLF5 and KLF6 are significantly lower expressed in AML blast and CD34+ progenitor cells as compared to normal granulocytes. Moreover, we found markedly increased KLF levels in acute promyelocytic leukemia patients who received oral ATRA. Accordingly, we observed a strong induction of KLF5/6 upon ATRA-treatment in NB4 and HT93 APL but not in ATRA-resistant NB4-R cells. Lastly, knocking down KLF5 or KLF6 in NB4 cells significantly attenuated neutrophil differentiation. In conclusion, we found a significant repression of KLF transcription factors in primary AML samples as compared to mature neutrophils and further show that KLF5 and KLF6 are functionally involved in neutrophil differentiation of APL cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wood formation is an economically and environmentally important process and has played a significant role in the evolution of terrestrial plants. Despite its significance, the molecular underpinnings of the process are still poorly understood. We have previously shown that four Lateral Boundary Domain (LBD) transcription factors have important roles in the regulation of wood formation with two (LBD1 and LBD4) involved in secondary phloem and ray cell development and two (LBD15 and LBD18) in secondary xylem formation. Here, we used comparative phylogenetic analyses to test potential roles of the four LBD genes in the evolution of woodiness. We studied the copy number and variation in DNA and amino acid sequences of the four LBDs in a wide range of woody and herbaceous plant taxa with fully sequenced and annotated genomes. LBD1 showed the highest gene copy number across the studied species, and LBD1 gene copy number was strongly and significantly correlated with the level of ray seriation. The lianas, cucumber and grape, with multiseriate ray cells showed the highest gene copy number (12 and 11, respectively). Because lianas’ growth habit requires significant twisting and bending, the less lignified ray parenchyma cells likely facilitate stem flexibility and maintenance of xylem conductivity. We further demonstrate conservation of amino acids in the LBD18 protein sequences that are specific to woody taxa. Neutrality tests showed evidence for strong purifying selection on these gene regions across various orders, indicating adaptive convergent evolution of LBD18. Structural modeling demonstrates that the conserved amino acids have a significant impact on the tertiary protein structure and thus are likely of significant functional importance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The BH3-only protein Bim is a critical initiator of apoptosis in hematopoietic cells. Bim is upregulated in response to growth factor withdrawal and in vitro studies have implicated the transcription factor Foxo3a as a critical inducer. To test the importance of this regulation in vivo, we generated mice with mutated Foxo-binding sites within the Bim promoters (Bim(ΔFoxo/ΔFoxo)). Contrary to Bim-deficient mice, Bim(ΔFoxo/ΔFoxo) mice had a normal hematopoietic system. Moreover, cytokine-dependent haematopoietic cells from Bim(ΔFoxo/ΔFoxo) and wt mice died at similar rates. These results indicate that regulation of Bim by Foxo transcription factors is not critical for the killing of hematopoietic cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transcription enhancer factor 1 is essential for cardiac, skeletal, and smooth muscle development and uses its N-terminal TEA domain (TEAD) to bind M-CAT elements. Here, we present the first structure of TEAD and show that it is a three-helix bundle with a homeodomain fold. Structural data reveal how TEAD binds DNA. Using structure-function correlations, we find that the L1 loop is essential for cooperative loading of TEAD molecules on to tandemly duplicated M-CAT sites. Furthermore, using a microarray chip-based assay, we establish that known binding sites of the full-length protein are only a subset of DNA elements recognized by TEAD. Our results provide a model for understanding the regulation of genome-wide gene expression during development by TEA/ATTS family of transcription factors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In mammalian cells, mRNA decay begins with deadenylation, which involves two consecutive phases mediated by the PAN2-PAN3 and the CCR4-CAF1 complexes, respectively. The regulation of the critical deadenylation step and its relationship with RNA-processing bodies (P-bodies), which are thought to be a site where poly(A)-shortened mRNAs get degraded, are poorly understood. Using the Tet-Off transcriptional pulsing approach to investigate mRNA decay in mouse NIH 3T3 fibroblasts, we found that TOB, an antiproliferative transcription factor, enhances mRNA deadenylation in vivo. Results from glutathione S-transferase pull-down and coimmunoprecipitation experiments indicate that TOB can simultaneously interact with the poly(A) nuclease complex CCR4-CAF1 and the cytoplasmic poly(A)-binding protein, PABPC1. Combining these findings with those from mutagenesis studies, we further identified the protein motifs on TOB and PABPC1 that are necessary for their interaction and found that interaction with PABPC1 is necessary for TOB's deadenylation-enhancing effect. Moreover, our immunofluorescence microscopy results revealed that TOB colocalizes with P-bodies, suggesting a role of TOB in linking deadenylation to the P-bodies. Our findings reveal a new mechanism by which the fate of mammalian mRNA is modulated at the deadenylation step by a protein that recruits poly(A) nuclease(s) to the 3' poly(A) tail-PABP complex.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The myocyte enhancer factor (MEF)-2 family of transcription factors has been implicated in the regulation of muscle transcription in vertebrates, but the precise position of these regulators within the genetic hierarchy leading to myogenesis is unclear. The MEF2 proteins bind to a conserved A/T-rich DNA sequence present in numerous muscle-specific genes, and they are expressed in the cells of the developing somites and in the embryonic heart at the onset of muscle formation in mammals. The MEF2 genes belong to the MADS box family of transcription factors, which control specific programs of gene expression in species ranging from yeast to humans. Each MEF2 family member contains two highly conserved protein motifs, the MADS domain and the MEF2-specific domain, which together provide the MEF2 factors with their unique DNA binding and dimerization properties. In an effort to further define the function of the MEF2 proteins, and to evaluate the degree of conservation shared among these factors and the phylogenetic pathways that they regulate, we sought to identify MEF2 family members in other species. In Drosophila, a homolog of the vertebrate MEF2 genes was identified and termed D-mef2. The D-MEF2 protein binds to the consensus MEF2 element and can activate transcription through tandem copies of that site. During Drosophila embryogenesis, D-MEF2 is specific to the mesoderm germ layer of the developing embryo and becomes expressed in all muscle cell types within the embryo. The role of D-mef2 in Drosophila embryogenesis was examined by generating a loss-of-function mutation in the D-mef2 gene. In embryos homozygous for this mutant allele, somatic, cardiac, and visceral muscles fail to differentiate, but precursors of these myogenic lineages are normally specified and positioned. These results demonstrate that different muscle cell types share a common myogenic differentiation program controlled by MEF2 and suggest that this program has been conserved from Drosophila to mammals. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

USF, Upstream Stimulatory Factor, is a family of ubiquitous transcription factors that contain highly conserved basic helix-loop-helix leucine zipper DNA binding domains and recognize the core DNA sequence CACGTG. In human and mouse, two members of the USF family, USF1 and USF2, encoded by two different genes, contribute to the USF activity. In order to gain insights into the mechanisms by which USFs function as transcriptional activators, different approaches were used to map the domains of USF2 responsible for nuclear localization and transcriptional activation. Two stretches of amino acids, one in the basic region of the DNA binding domain, the other in a highly conserved N-terminal region, were found to direct nuclear localization independently of one another. Two distinct activation domains were also identified. The first one, located in the conserved N-terminal region that overlaps the C-terminal nuclear localization signal, functioned only in the presence of an initiator element in the promoter of the reporter. The second, in a nonconserved region, activated transcription in the absence of an initiator element or when fused to a heterologous DNA binding domain. These results suggest that USF2 functions in different promoter contexts by selectively utilizing different activation domains.^ The deletion analysis of USF2 also identified two dominant negative mutants of USF, one lacking the activation domain, the other lacking the basic domain. The latter proved useful for testing the direct involvement of USFs in the transcriptional activation mediated by the viral protein IE62.^ To investigate the biological function of USFs, foci and colony formation assays were used to study the growth regulation by USFs. It was found that USFs had a strong antagonistic effect on cellular transformation mediated by the bHLH/LZ protein Myc. This effect required the DNA binding activity of either USF 1 or USF2. Moreover, USF2, but not USF1 or other mutants of USFs, was also found to have strong inhibitory effect on the cellular transformation by E1a and on the growth of HeLa cells. These results demonstrate that USFs could potentially regulate growth through two mechanisms, one by antagonizing the function of Myc in cellular transformation, the other by mediating a more general growth inhibitory effect. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cytokine-induced transcription of the serum amyloid A3 (SAA3) gene promoter requires a transcriptional enhancer that contains three functional elements: two C/EBP-binding sites and a third site that interacts with a constitutively expressed transcription factor, SAA3 enhancer factor (SEF). Deletion or site-specific mutations in the SEF-binding site drastically reduced SAA3 promoter activity, strongly suggesting that SEF is important in SAA3 promoter function. To further elucidate its role in the regulation of the SAA3 gene, we purified SEF from HeLa cell nuclear extracts to near homogeneity by using conventional liquid chromatography and DNA-affinity chromatography. Ultraviolet cross-linking and Southwestern experiments indicated that SEF consisted of a single polypeptide with an apparent molecular mass of 65 kDa. Protein sequencing, oligonucleotide competition and antibody supershift experiments identified SEF as transcription factor LBP-1c/CP2/LSF. Cotransfection of SEF expression plasmid with SAA3-luciferase reporter resulted in 3- to 5-fold activation of SAA3 promoter. Interestingly, when SEF-transfected cells were treated with either conditioned medium (CM) or interleukin (IL) 1, the SAA3 promoter was synergistically activated in a dose-dependent manner. Furthermore, when SEF-binding site was mutated, the response of SAA3 promoter to IL-1 or CM stimulation was abolished or drastically decreased, suggesting that SEF may functionally cooperate with an IL-1-inducible transcription factor. Indeed, our functional studies showed that NFκB is a key transcription factor that mediates the IL-1-induced expression of SAA3 gene, and that SEF can synergize with NFκBp65 to activate SAA3 promoter. By coimmunoprecipitation experiments, we found that SEF could specifically interact with NFκBp65, and that the association of these two factors was enhanced upon IL-1 and CM stimulation. This suggests that the molecular basis for the functional synergy between SEF and NFκB may be due to the ability of SEF to physically interact with NPκB. In addition to its interaction with SEF, NFκB-dependent activation also requires the weak κB site in the C element and its interaction with C/EBP. Besides its role in regulating SAA3 gene expression, we provide evidence that SEF could also bind in a sequence-specific manner to the promoters of α2-macroglobulin, Aα fibrinogen, and 6–16 genes and to an intronic enhancer of the human Wilm's tumor 1 gene, suggesting a functional role in the regulation of these genes. By coimmunoprecipitation experiments, we determined that SEF could specifically associate with both Stat3 and Stat2 upon cytokine stimulation. To examine the functional roles of such interactions, we evaluated the effects of SEF on the transcriptional regulation of two reporter genes: Aα fibrinogen and 6–16, which are IL-6- and interferon-α-responsive, respectively. Our results showed that cotransfection of SEF expression plasmid can activate the expression of Aα fibrinogen gene and 6–16 gene. Moreover, SEF can dramatically enhance the interferon-α-induced expression of 6–16 gene and IL-6-induced expression of Aα fibrinogen gene, suggesting that SEF may functionally cooperate with ISGF3 and Stat3 to mediate interferon-α and IL-6 signaling. ^ Our findings that SEF can interact with multiple cytokine-inducible transcription factors to mediate the expression of target genes open a new avenue of investigation of cooperative transcriptional regulation of gene expression, and should further our understanding of differential gene expression in response to a specific stimulus. In summary, our data provide evidence that SEF can mediate the signaling of different cytokines by interacting with various cytokine-inducible transcription factors. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ethylene responsive factors (ERFs) are a large family of plant-specific transcription factors that are involved in the regulation of plant development and stress responses. However, little to nothing is known about their role in herbivore-induced defense. We discovered a nucleus-localized ERF gene in rice (Oryza sativa), OsERF3, that was rapidly up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis. Antisense and over-expression of OsERF3 revealed that it positively affects transcript levels of two mitogen-activated protein kinases (MAPKs) and two WRKY genes as well as concentrations of jasmonate (JA), salicylate (SA) and the activity of trypsin protease inhibitors (TrypPIs). OsERF3 was also found to mediate the resistance of rice to SSB. On the other hand, OsERF3 was slightly suppressed by the rice brown planthopper (BPH) Nilaparvata lugens (Stål) and increased susceptibility to this piercing sucking insect, possibly by suppressing H2O2 biosynthesis. We propose that OsERF3 affects early components of herbivore-induced defense responses by suppressing MAPK repressors and modulating JA, SA, ethylene and H2O2 pathways as well as plant resistance. Our results also illustrate that OsERF3 acts as a central switch that gears the plant’s metabolism towards an appropriate response to chewing or piercing/sucking insects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell to cell adhesion molecule (CEACAM1), a type II tumor suppressor, has been found to be down-regulated in prostate cancer cells. The mechanism that causes CEACAM1's down-regulation in tumorigenesis is unknown. Here we show that the transcriptional activity of CEACAM1 is decreased in prostate cancer cells. This decrease is not due to methylation of the CEACAM1's promoter, but rather to the alteration of transcription factors regulating CEACAM1 expression. ^ Since androgen/androgen receptors (AR) are potent regulators of prostate growth and differentiation, their role on CEACAM1 gene transcription was examined. The androgen receptor could directly increase CEACAM1 transcriptional activity in a ligand dependent manner by interacting with an AR consensus element that resides in the CEACAM1 promoter. However, AR binding to the CEACAM1 promoter is not related to the loss of CEACAM1 during prostate cancer progression. ^ Further analysis enabled us to determine the particular region in the CEACAM1 promoter that mediates a decrease in CEACAM1 transcriptional activity in prostate cancer cells. Upon further examination, we found that this CEACAM1 promoter region interacts with the Sp1, Sp2, and Sp3 transcription factors. However, only Sp2 expression was found to increase in prostate cancer cells. Inhibiting Sp2 from binding to the CEACAM1 promoter caused an increase in CEACAM1 transcriptional activity in prostate cancer cells. In addition, over-expressing Sp2 in normal prostate cells resulted in a decrease in CEACAM1 transcriptional activity and endogenous protein expression. These observations suggest that Sp2 is a transcription repressor of CEACAM1. Furthermore, prostate cancer cells treated with trichostatin A (TSA), a specific histone deacetylase (HDAC) inhibitor, activated CEACAM1 transcriptional activity. This implies that HDACs are involved in CEACAM1 transcriptional activity. Mutation of the Sp2 DNA binding region on the CEACAM1 promoter inhibited TSA activation of CEACAM1 transcriptional activity. This indicates that HDACs inhibit CEACAM1 transcriptional activity through Sp2. Base on these results, we propose that Sp2 is critical for down-regulating CEACAM1 expression, and one mechanism by which Sp2 represses CEACAM1 expression is by recruiting HDAC to the CEACAM1 promoter in prostate cancer cells. Collectively, these findings provide novel insights into mechanisms that cause the down-regulation of CEACAM1 expression in prostate cancer cells. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transcription factors must be able to access their DNA binding sites to either activate or repress transcription. However, DNA wrapping and compaction into chromatin occludes most binding sites from ready access by proteins. Pioneer transcription factors are capable of binding their DNA elements within a condensed chromatin context and then reducing the level of nucleosome occupancy so that the chromatin structure is more accessible. This altered accessibility increases the probability of other transcription factors binding to their own DNA binding elements. My hypothesis is that Foxa1, a ‘pioneer’ transcription factor, activates alpha-fetoprotein (AFP) expression by binding DNA in a chromatinized environment, reducing the nucleosome occupancy and facilitating binding of additional transcription factors.^ Using retinoic-acid differentiated mouse embryonic stem cells, we illustrate a mechanism for activation of the tumor marker AFP by the pioneer transcription factor Foxa1 and TGF-β downstream effector transcription factors Smad2 and Smad4. In differentiating embryonic stem cells, binding of the Foxa1 forkhead box transcription factor to chromatin reduces nucleosome occupancy and levels of linker histone H1 at the AFP distal promoter. The more accessible DNA is subsequently bound by the Smad2 and Smad4 transcription factors, concurrent with activation of transcription. Chromatin immunoprecipitation analyses combined with siRNA-mediated knockdown indicate that Smad protein binding and the reduction of nucleosome occupancy at the AFP distal promoter is dependent on Foxa1. In addition to facilitating transcription factor binding, Foxa1 is also associated with histone modifications related to active gene expression. Acetylation of lysine 9 on histone H3, a mark that is associated active transcription, is dependent on Foxa1, while methylation of H3K4, also associated with active transcription, is independent of Foxa1. I propose that Foxa1 potentiates a region of chromatin to respond to Smad proteins, leading to active expression of AFP.^ These studies demonstrate one mechanism whereby a transcription factor can alter the accessibility of additional transcription factors to chromatin, by altering nucleosome positions. Specifically, Foxa1 exposes DNA so that Smad4 can bind to its regulatory element and activate transcription of the tumor-marker gene AFP.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Establishment of a myogenic phenotype involves antagonism between cell proliferation and differentiation. The recent identification of the MyoD family of muscle-specific transcription factors provides opportunities to dissect at the molecular level the mechanisms through which defined cell type-specific transcription factors respond to environmental cues and regulate differentiation programs. This project is aimed at elucidation of the molecular mechanism whereby growth factors repress myogenesis. Initial studies demonstrated that nuclear oncogenes such as c-fos, junB and c-jun are immediate early genes that respond to serum and TGF-$\beta$. Using the muscle creatine kinase (MCK) enhancer linked to the reporter gene CAT as a marker for differentiation, we showed that transcriptional function of myogenin can be disrupted in the presence of c-Fos, JunB and cjun. In contrast, JunD, which shares DNA-binding specificity with JunB and c-Jun but is expressed constitutively in muscle cells, failed to show the inhibition. The repression by Fos and Jun is targeted at KE-2 motif, the same sequence that mediates myogenin-dependent activation and muscle-specific transactivation. Deletion analysis indicated that the transactivation domain of c-Jun at the N-terminus is responsible for the repression. Considering that myogenin is a phosphoprotein and cAMP and TPA are able to regulate myogenesis, we examined whether constitutively active protein kinase C (PKC) and protein kinase A (PKA) could substitute for exogenous growth factors and prevent transcription activation by myogenin. Indeed, the basic region of myogenin is phosphorylated by PKC at a threonine that is conserved in all members of the MyoD family. Phosphorylation at this site attenuates DNA binding activity of myogenin. Protein kinase A can also phosphorylate myogenin in a region adjacent to the DNA binding domain. However, phosphorylation at this site is insufficient to abrogate myogenin's DNA binding capacity, suggesting that PKA and PKC may affect myogenin transcriptional activity through different mechanisms. These findings provide insight into the mechanisms through which growth factor signals negatively regulate the muscle differentiation program and contribute to an understanding of signal transducing pathways between the cell membrane and nucleus. ^