983 resultados para ANCHORAGE-INDEPENDENT GROWTH
Resumo:
The insulin-like growth factor (IGF) is a major anabolic regulator in articular cartilage. The IGF-binding proteins (IGFBPs) are increased during osteoarthritis (OA), but the function of the later proteins remains unknown. In general, the IGFBPs are pluripotential effectors capable of IGF regulation and of acting on their own to control key cell functions, including survival and proliferation. The independent functions are often associated with their cell location, and therefore this study explores the distribution of IGFBP-2 and IGFBP-3 in articular chondrocytes. Immunohistochemistry was used to localize IGFBP-2 in normal human articular cartilage. Bovine chondrocytes were used for subcellular fractionation (hypotonic cell lysis) under nonreducing conditions and nuclear purification (centrifugation on sucrose cushions). Cell fraction markers and IGFBPs were assayed in the subcellular fractions by Western immunoblot. The IHC results showed association of IGFBP-2 with chondrocytes, but not with the nuclei. Subcellular fractionation of isolated chondrocytes yielded intact nuclei as assessed at the light microscopic level; the nuclear marker histone H1 was exclusively associated with this fraction. More than 90% of the cytoplasmic marker GAPDH and all the detectable IGFBP-2 were in the cytoplasmic fraction. Immunoreactive IGFBP-3 was found in the cytoplasmic and peri-nuclear/nuclear fractions. Chondrocytes contain intracellular IGFBP-2 and IGFBP-3 but only IGFBP-3 is associated with nuclei. This suggests the hypothesis that the actions of these IGFBPs in articular cartilage extend beyond the classic modulation of IGF receptor action.
Resumo:
OBJECTIVE: Insulin-like growth factor-I (IGF-I) is critically involved in the control of cartilage matrix metabolism. It is well known that IGF-binding protein-3 (IGFBP-3) is increased during osteoarthritis (OA), but its function(s) is not known. In other cells, IGFBP-3 can regulate IGF-I action in the extracellular environment and can also act independently inside the cell; this includes transcriptional gene control in the nucleus. These studies were undertaken to localize IGFBP-3 in human articular cartilage, particularly within cells. DESIGN: Cartilage was dissected from human femoral heads derived from arthroplasty for OA, and OA grade assessed by histology. Tissue slices were further characterized by extraction and assay of IGFBPs by IGF ligand blot (LB) and by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry (IHC) for IGF-I and IGFBP-3 was performed on cartilage from donors with mild, moderate and severe OA. Indirect fluorescence and immunogold-labeling IHC studies were included. RESULTS: LBs of chondrocyte lysates showed a strong signal for IGFBP-3. IHC of femoral cartilage sections at all OA stages showed IGF-I and IGFBP-3 matrix stain particularly in the top zones, and closely associated with most cells. A prominent perinuclear/nuclear IGFBP-3 signal was seen. Controls using non-immune sera or antigen-blocked antibody showed negative or strongly reduced stain. In frozen sections of human ankle cartilage, immunofluorescent IGFBP-3 stain co-localized with the nuclear 4',6-diamidino-2-phenyl indole (DAPI) stain in greater than 90% of the cells. Immunogold IHC of thin sections and transmission electron immunogold microscopy of ultra-thin sections showed distinct intra-nuclear staining. CONCLUSIONS: IGFBP-3 in human cartilage is located in the matrix and within chondrocytes in the cytoplasm and nuclei. This new finding indicates that the range of IGFBP-3 actions in articular cartilage is likely to include IGF-independent roles and opens the door to studies of its nuclear actions, including the possible regulation of hormone receptors or transcriptional complexes to control gene action.
Resumo:
BACKGROUND AND AIM OF THE STUDY: Recent studies have suggested placental growth factor (PlGF) and vascular endothelial growth factor (VEGF) as promising new biomarkers for risk stratification in acute coronary syndromes (ACS). However, little is known about the influence of percutaneous coronary intervention (PCI) on circulating PlGF and VEGF levels. METHODS: Thirty-five patients with ACS, 27 patients with stable coronary artery disease (sCAD), and nine healthy controls were enrolled in the study. Although all patients with ACS and 14 patients with stable angina pectoris underwent PCI, 13 patients with coronary artery disease required no revascularization (sCAD). PlGF and VEGF plasma concentrations were measured by immunoassay during and at the end of PCI and coronary angiography. RESULTS: Plasma PlGF levels were comparable in patients with ACS and sCAD on admission. Although coronary angiography or heparin alone did not alter PlGF and VEGF levels, immediately after PCI a dramatic increase was seen in circulating PlGF and a decrease in VEGF, which was independent of the clinical presentation of the patients, heparin administration, or the angiographic procedure itself, but was associated with the extent of coronary artery disease and the amount of the injected contrast media. In-vitro experiments revealed that radiocontrast agents induced the release of PlGF from endothelial cells without altering PlGF mRNA expression. CONCLUSION: Patients undergoing PCI exhibit an increase in circulating PlGF, probably caused by posttranslational modifications of radiocontrast agents in endothelial cells. Therefore, analysis of plasma PlGF and VEGF levels may consider the timing of blood sampling with respect to PCI and contrast media exposure.
Resumo:
PURPOSE: Dasatinib is a dual Src/Abl inhibitor recently approved for Bcr-Abl+ leukemias with resistance or intolerance to prior therapy. Because Src kinases contribute to multiple blood cell functions by triggering a variety of signaling pathways, we hypothesized that their molecular targeting might lead to growth inhibition in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN: We studied growth factor-dependent and growth factor-independent leukemic cell lines, including three cell lines expressing mutants of receptor tyrosine kinases (Flt3 or c-Kit) as well as primary AML blasts for responsiveness to dasatinib. RESULTS: Dasatinib resulted in the inhibition of Src family kinases in all cell lines and blast cells at approximately 1 x 10(-9) mol/L. It also inhibited mutant Flt3 or Kit tyrosine phosphorylation at approximately 1 x 10(-6) mol/L. Mo7e cells expressing the activating mutation (codon 816) of c-Kit were most sensitive to growth inhibition with a GI(50) of 5 x 10(-9) mol/L. Primary AML blast cells exhibited a growth inhibition of <1 x>10(-6) mol/L. Cell lines that showed growth inhibition at approximately 1 x 10(-6) mol/L showed a G(1) cell cycle arrest and correlated with accumulation of p21 and p27 protein. The addition of rapamycin or cytotoxic agents enhanced growth inhibition. Dasatinib also caused the apoptosis of Mo7e cells expressing oncogenic Kit. CONCLUSIONS: Although all of the precise targets for dasatinib are not known, this multikinase inhibitor causes either growth arrest or apoptosis in molecularly heterogeneous AML. The addition of cytotoxic or targeted agents can enhance its effects.
Resumo:
Skeletal muscle differentiation involves sequential events in which proliferating undifferentiated myoblasts withdraw from the cell cycle and fuse to form multinucleated myotubes. The process of fusion is accompanied by the disappearance of proteins associated with cell proliferation and the coordinate induction of a battery of muscle-specific gene products, which includes the muscle isoenzyme of creatine kinase, nicotinic acetylcholine receptor, and contractile proteins such as alpha-actin. The molecular events associated with myogenesis are particularly amenable to experimental analysis because the events which occur in vivo can be recapitulated in vitro using established muscle cell lines. Initiation of myogenic differentiation in vitro can be achieved by removing serum from the culture medium. Myogenesis, therefore, can be considered to be regulated through a repression-type of mechanism by components in serum. The objectives of this project were to identify the components involved in regulation of myogenesis and approach the mechanism(s) whereby these components achieve their regulatory function. Initially, the effects of a series of polypeptide growth factors on myogenesis were examined. Among them TGF$\beta$ and FGF were found to be potent inhibitors of myogenic differentiation which did not affect cell proliferation. The inhibitory effects of these growth factors on differentiation requires their persistent presence in the culture medium. After myoblasts have undergone fusion, they become refractory to the inhibitory effects of TGF$\beta$, FGF, and serum. When fusion is inhibited by the presence of EGTA, a Ca$\sp{2+}$ chelator, muscle-specific genes are expressed reversibly upon removal of inhibitory growth factors. Subsequent exposure of biochemically differentiated cells to serum or TGF$\beta$ leads to down-regulation of muscle-specific genes. Stimulation with serum also leads to reentry of myocytes into the cell cycle, whereas fused myotubes are irreversibly and terminally differentiated. Measurement of levels of TGF$\beta$ receptors reveals that under non-fusing conditions, TGF$\beta$ receptor levels in biochemically differentiated myocytes remained as high as in undifferentiated myoblasts, while during terminal differentiation, TGF$\beta$ receptors decreased at least five-fold. Thus, down-regulation of TGF$\beta$ receptors is coupled to irreversible differentiation, but not reversible differentiation in the absence of fusion. The possible involvement of second messenger systems, such as cAMP and protein kinase C, in the pathway(s) by which TGF$\beta$, FGF, or serum factors transduce their signals from the cell surface to the nucleus was also examined. The results showed that myogenic differentiation is subject to negative regulation through cAMP elevation-dependent and cAMP elevation-independent pathways and that serum mitogens, TGF$\beta$ and FGF inhibit differentiation through a mechanism independent of cAMP-elevation or protein kinase C activation. ^
Resumo:
Left ventricular mass (LVM) is a strong predictor of cardiovascular disease (CVD) in adults. However, normal growth of LVM in healthy children is not well understood, and previous results on independent effects of body size and body fatness on LVM have been inconsistent. The purpose of this study was (1) to establish the normal growth curve of LVM from age 8 to age 18, and evaluate the determinants of change in LVM with age, and (2) to assess the independent effects of body size and body fatness on LVM.^ In Project HeartBeat!, 678 healthy children aged 8, 11 and 14 years at baseline were enrolled and examined at 4-monthly intervals for up to 4 years. A synthetic cohort with continuous observations from age 8 to 18 years was constructed. A total of 4608 LVM measurements was made from M-mode echocardiography. The multilevel linear model was used for analysis.^ Sex-specific trajectories of normal growth of LVM from age 8 to 18 was displayed. On average, LVM was 15 g higher in males than females. Average LVM increased linearly in males from 78 g at age 8 to 145 g at age 18. For females, the trajectory was curvilinear, nearly constant after age 14. No significant racial differences were found. After adjustment for the effects of body size and body fatness, average LVM decreased slightly from age 8 to 18, and sex differences in changes of LVM remained constant.^ The impact of body size on LVM was examined by adding to a basic LVM-sex-age model one of 9 body size indicators. The impact of body fatness was tested by further introducing into each of the 9 LVM models (with one or another of the body size indicators) one of 4 body fatness indicators, yielding 36 models with different body size and body fatness combinations. The results indicated that effects of body size on LVM can be distinguished between fat-free body mass and fat body mass, both being independent, positive predictors. The former is the stronger determinant. When a non-fat-free body size indicator is used as predictor, the estimated residual effect of body fatness on LVM becomes negative. ^
Resumo:
BACKGROUND: Reproducibility of basic research investigations in homeopathy is challenging. This study investigated if formerly observed effects of homeopathically potentised gibberellic acid (GA3) on growth of duckweed (Lemna gibba L.) were reproducible. METHODS: Duckweed was grown in potencies (14x-30x) of GA3 and one time succussed and unsuccussed water controls. Outcome parameter area-related growth rate was determined by a computerised image analysis system. Three series including five independent blinded and randomised potency experiments (PE) each were carried out. System stability was controlled by three series of five systematic negative control (SNC) experiments. Gibbosity (a specific growth state of L. gibba) was investigated as possibly essential factor for reactivity of L. gibba towards potentised GA3 in one series of potency and SNC experiments, respectively. RESULTS: Only in the third series with gibbous L. gibba L. we observed a significant effect (p = 0.009, F-test) of the homeopathic treatment. However, growth rate increased in contrast to the former study, and most biologically active potency levels differed. Variability in PE was lower than in SNC experiments. The stability of the experimental system was verified by the SNC experiments. CONCLUSIONS: Gibbosity seems to be a necessary condition for reactivity of L. gibba to potentised GA3. Further still unknown conditions seem to govern effect direction and the pattern of active and inactive potency levels. When designing new reproducibility studies, the physiological state of the test organism must be considered. Variability might be an interesting parameter to investigate effects of homeopathic remedies in basic research.
Resumo:
Expansins are members of a multigene family of extracellular proteins, which increase cell wall extensibility in vitro and thus are thought to be involved in cell expansion. The major significance of the presence of this large gene family may be that distinctly expressed genes can independently regulate cell expansion in place and time. Here we report on LeExp9, a new expansin gene from tomato, and compare its expression in the shoot tip with that of LeExp2 and LeExp18. LeExp18 gene is expressed in very young tissues of the tomato shoot apex and the transcript levels are upregulated in the incipient primordium. LeExp2 mRNA accumulated in more mature tissues and transcript levels correlated with cell elongation in the elongation zone. In situ hybridization experiments showed a uniform distribution of LeExp9 mRNA in submeristematic tissues. When gibberellin-deficient mutant tomatoes that lacked elongation of the internodes were treated with gibberellin, the phenotypic rescue was correlated with an increase in LeExp9 and LeExp2, but not LeExp18 levels. We propose that the three expansins define three distinct growing zones in the shoot tip. In the meristem proper, gibberellin-independent LeExp18 mediates the cell expansion that accompanies cell division. In the submeristematic zone, LeExp9 mediates cell expansion at a time that cell division comes to a halt. LeExp9 expression requires gibberellin but the hormone is not normally limiting. Finally, LeExp2 mediates cell elongation in young stem tissue. LeExp2 expression is limited by the available gibberellin. These data suggest that regulation of cell wall extensibility is controlled, at least in part, by differential regulation of expansin genes.
Resumo:
Tree-rings offer one of the few possibilities to empirically quantify and reconstruct forest growth dynamics over years to millennia. Contemporaneously with the growing scientific community employing tree-ring parameters, recent research has suggested that commonly applied sampling designs (i.e. how and which trees are selected for dendrochronological sampling) may introduce considerable biases in quantifications of forest responses to environmental change. To date, a systematic assessment of the consequences of sampling design on dendroecological and-climatological conclusions has not yet been performed. Here, we investigate potential biases by sampling a large population of trees and replicating diverse sampling designs. This is achieved by retroactively subsetting the population and specifically testing for biases emerging for climate reconstruction, growth response to climate variability, long-term growth trends, and quantification of forest productivity. We find that commonly applied sampling designs can impart systematic biases of varying magnitude to any type of tree-ring-based investigations, independent of the total number of samples considered. Quantifications of forest growth and productivity are particularly susceptible to biases, whereas growth responses to short-term climate variability are less affected by the choice of sampling design. The world's most frequently applied sampling design, focusing on dominant trees only, can bias absolute growth rates by up to 459% and trends in excess of 200%. Our findings challenge paradigms, where a subset of samples is typically considered to be representative for the entire population. The only two sampling strategies meeting the requirements for all types of investigations are the (i) sampling of all individuals within a fixed area; and (ii) fully randomized selection of trees. This result advertises the consistent implementation of a widely applicable sampling design to simultaneously reduce uncertainties in tree-ring-based quantifications of forest growth and increase the comparability of datasets beyond individual studies, investigators, laboratories, and geographical boundaries.
Resumo:
The molecular regulation of horn growth in ruminants is still poorly understood. To investigate this process, we collected 1019 hornless (polled) animals from different cattle breeds. High-density SNP genotyping confirmed the presence of two different polled associated haplotypes in Simmental and Holstein cattle co-localized on BTA 1. We refined the critical region of the Simmental polled mutation to 212 kb and identified an overlapping region of 932 kb containing the Holstein polled mutation. Subsequently, whole genome sequencing of polled Simmental and Holstein cows was used to determine polled associated genomic variants. By genotyping larger cohorts of animals with known horn status we found a single perfectly associated insertion/deletion variant in Simmental and other beef cattle confirming the recently published possible Celtic polled mutation. We identified a total of 182 sequence variants as candidate mutations for polledness in Holstein cattle, including an 80 kb genomic duplication and three SNPs reported before. For the first time we showed that hornless cattle with scurs are obligate heterozygous for one of the polled mutations. This is in contrast to published complex inheritance models for the bovine scurs phenotype. Studying differential expression of the annotated genes and loci within the mapped region on BTA 1 revealed a locus (LOC100848215), known in cow and buffalo only, which is higher expressed in fetal tissue of wildtype horn buds compared to tissue of polled fetuses. This implicates that the presence of this long noncoding RNA is a prerequisite for horn bud formation. In addition, both transcripts associated with polledness in goat and sheep (FOXL2 and RXFP2), show an overexpression in horn buds confirming their importance during horn development in cattle.
Resumo:
Here we explore the role of the interplay between host immune response and epithelial-mesenchymal-transition (EMT)-Type tumor-budding on the outcome of pancreatic adenocarcinoma (PDAC).CD4+, CD8+, and FOXP3+T-cells as well as iNOS+ (M1) and CD163+- macrophages (M2) were assessed on multipunch tissue-microarrays containing 120 well-characterized PDACs, precursor lesions (PanINs) and corresponding normal tissue. Counts were normalized for the percentage of tumor/spot and associated with the clinico-pathological features, including peritumoral (PTB) and intratumoral (ITB) EMT-Type tumor-budding and outcome.Increased FOXP3+T-cell-counts and CD163-macrophages and decreased CD8+T-cell-counts were observed in PDACs compared with normal tissues and PanINs (p < 0.0001). Increased peritumoral FOXP3+T-cell-counts correlated significantly with venous invasion, distant metastasis, R1-status, high-grade ITB, PTB and independently with reduced survival. Increased intratumoral FOXP3+T-cells correlated with lymphatic invasion, N1-stage, PTB and marginally with adverse outcome. High peritumoral CD163-counts correlated with venous invasion, PTB and ITB. High intratumoral CD163-counts correlated with higher T-stage and PTB.PDAC-microenvironment displays a tumor-favoring immune-cell composition especially in the immediate environment of the tumor-buds that promotes further growth and indicates a close interaction of the immune response with the EMT-process. Increased peritumoral FOXP3+T-cell density is identified as an independent adverse prognostic factor in PDAC. Patients with phenotypically aggressive PDACs may profit from targeted immunotherapy against FOXP3.
Resumo:
Salmonella typhimurium can colonize the gut, invade intestinal tissues, and cause enterocolitis. In vitro studies suggest different mechanisms leading to mucosal inflammation, including 1) direct modulation of proinflammatory signaling by bacterial type III effector proteins and 2) disruption or penetration of the intestinal epithelium so that penetrating bacteria or bacterial products can trigger innate immunity (i.e., TLR signaling). We studied these mechanisms in vivo using streptomycin-pretreated wild-type and knockout mice including MyD88(-/-) animals lacking an adaptor molecule required for signaling via most TLRs. The Salmonella SPI-1 and the SPI-2 type III secretion systems (TTSS) contributed to inflammation. Mutants that retain only a functional SPI-1 (M556; sseD::aphT) or a SPI-2 TTSS (SB161; DeltainvG) caused attenuated colitis, which reflected distinct aspects of the colitis caused by wild-type S. typhimurium: M556 caused diffuse cecal inflammation that did not require MyD88 signaling. In contrast, SB161 induced focal mucosal inflammation requiring MyD88. M556 but not SB161 was found in intestinal epithelial cells. In the lamina propria, M556 and SB161 appeared to reside in different leukocyte cell populations as indicated by differential CD11c staining. Only the SPI-2-dependent inflammatory pathway required aroA-dependent intracellular growth. Thus, S. typhimurium can use two independent mechanisms to elicit colitis in vivo: SPI-1-dependent and MyD88-independent signaling to epithelial cells and SPI-2-dependent intracellular proliferation in the lamina propria triggering MyD88-dependent innate immune responses.
Resumo:
BACKGROUND The long-term safety of growth hormone treatment is uncertain. Raised risks of death and certain cancers have been reported inconsistently, based on limited data or short-term follow-up by pharmaceutical companies. PATIENTS AND METHODS The SAGhE (Safety and Appropriateness of Growth Hormone Treatments in Europe) study assembled cohorts of patients treated in childhood with recombinant human growth hormone (r-hGH) in 8 European countries since the first use of this treatment in 1984 and followed them for cause-specific mortality and cancer incidence. Expected rates were obtained from national and local general population data. The cohort consisted of 24,232 patients, most commonly treated for isolated growth failure (53%), Turner syndrome (13%) and growth hormone deficiency linked to neoplasia (12%). This paper describes in detail the study design, methods and data collection and discusses the strengths, biases and weaknesses consequent on this. CONCLUSION The SAGhE cohort is the largest and longest follow-up cohort study of growth hormone-treated patients with follow-up and analysis independent of industry. It forms a major resource for investigating cancer and mortality risks in r-hGH patients. The interpretation of SAGhE results, however, will need to take account of the methods of cohort assembly and follow-up in each country.
Resumo:
BACKGROUND Children born preterm or with a small size for gestational age are at increased risk for childhood asthma. OBJECTIVE We sought to assess the hypothesis that these associations are explained by reduced airway patency. METHODS We used individual participant data of 24,938 children from 24 birth cohorts to examine and meta-analyze the associations of gestational age, size for gestational age, and infant weight gain with childhood lung function and asthma (age range, 3.9-19.1 years). Second, we explored whether these lung function outcomes mediated the associations of early growth characteristics with childhood asthma. RESULTS Children born with a younger gestational age had a lower FEV1, FEV1/forced vital capacity (FVC) ratio, and forced expiratory volume after exhaling 75% of vital capacity (FEF75), whereas those born with a smaller size for gestational age at birth had a lower FEV1 but higher FEV1/FVC ratio (P < .05). Greater infant weight gain was associated with higher FEV1 but lower FEV1/FVC ratio and FEF75 in childhood (P < .05). All associations were present across the full range and independent of other early-life growth characteristics. Preterm birth, low birth weight, and greater infant weight gain were associated with an increased risk of childhood asthma (pooled odds ratio, 1.34 [95% CI, 1.15-1.57], 1.32 [95% CI, 1.07-1.62], and 1.27 [95% CI, 1.21-1.34], respectively). Mediation analyses suggested that FEV1, FEV1/FVC ratio, and FEF75 might explain 7% (95% CI, 2% to 10%) to 45% (95% CI, 15% to 81%) of the associations between early growth characteristics and asthma. CONCLUSIONS Younger gestational age, smaller size for gestational age, and greater infant weight gain were across the full ranges associated with childhood lung function. These associations explain the risk of childhood asthma to a substantial extent.
Resumo:
Aldosterone is an important factor supporting placental growth and fetal development. Recently, expression of placental growth factor (PlGF) has been observed in response to aldosterone exposure in different models of atherosclerosis. Thus, we hypothesized that aldosterone up-regulates growth-adaptive angiogenesis in pregnancy, via increased placental PlGF expression. We followed normotensive pregnant women (n = 24) throughout pregnancy and confirmed these results in a second independent first trimester cohort (n = 36). Urinary tetrahydroaldosterone was measured by gas chromatography-mass spectrometry and corrected for creatinine. Circulating PlGF concentrations were determined by ELISA. Additionally, cultured cell lines, adrenocortical H295R and choriocarcinoma BeWo cells, as well as primary human third trimester trophoblasts were tested in vitro. PlGF serum concentrations positively correlated with urinary tetrahydroaldosterone corrected for creatinine in these two independent cohorts. This observation was not due to PlGF, which did not induce aldosterone production in cultured H295R cells. On the other hand, PlGF expression was specifically enhanced by aldosterone in the presence of forskolin (p < 0.01) in trophoblasts. A pronounced stimulation of PlGF expression was observed with reduced glucose concentrations simulating starvation (p < 0.001). In conclusion, aldosterone stimulates placental PlGF production, enhancing its availability during human pregnancy, a response amplified by reduced glucose supply. Given the crucial role of PlGF in maintaining a healthy pregnancy, these data support a key role of aldosterone for a healthy pregnancy outcome.