310 resultados para AMPHIBIAN
Resumo:
Recent reports have suggested that orexins, also known as hypocretins, play an important role in the modulation of respiratory control in mammals, but there are no data available describing the role of the orexinergic system in the peripheral and central chemoreception of non-mammalian vertebrates. Therefore, the present study was designed to examine the localization of orexin-immunoreactive neurons in the brain of toads (Rhinella schneideri) and to investigate the contribution of orexin receptor-1 (OX1R) to the hypoxic and hypercarbic ventilatory responses of these animals during light and dark phases. Our results demonstrated that the orexinergic neurons of R. schneideri are located in the suprachiasmatic nucleus of the diencephalon. Additionally, the intracerebroventricular injection of SB-334867 (OX1R selective antagonist) attenuated the ventilatory response to hypercarbia during the dark phase by acting on tidal volume and breathing frequency, while during the light phase, SB-334867 attenuated the ventilatory response to hypoxia by acting on tidal volume only. We conclude that in the toad R. schneideri, orexinergic neurons are located in the suprachiasmatic nucleus and that OX1R contributes to hypercarbic and hypoxic chemoreflexes.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We present a list of amphibian species from the Agudos and Jaú municipalities, a Midwest region of São Paulo state, Brazil. The 26 species recorded exhibited a strong seasonality, with their reproductive periods concentrated in the rainiest months (October and December). Most of the species (88%) are generalists and typically associated with open areas. Although none of the species to be associated exclusively forest environments, the occurrence of some species (12%) depends on the proximity of water bodies for environments with forest formation. Thus, the presence of riparian forest fragments near water bodies is essential for some populations, as these sites are refuge for some species.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Amphibian populations worldwide have been suffering declines generated by habitat degradation, loss, fragmentation and habitat split. With habitat loss and fragmentation in the landscape comes habitat split, which is the separation between the adult anuran habitat and breeding sites, forcing individuals to move through matrix during breeding seasons. Thus, habitat split increases the chance of extinction of amphibians with aquatic larval development and acts as a filter in the selection of species having great influence on species richness and community structure. The use of functional diversity allows us to consider the identity and characteristics of each species to understand the effects of fragmentation processes. The objective of this study was to estimate the effects of habitat split, as well as habitat loss in the landscape, on amphibians functional diversity (FD) and species richness (S). We selected 26 landscapes from a database with anuran surveys of Brazilian Atlantic Forest. For each landscape we calculated DF, S and landscape metrics at multiple scales. To calculate the DF we considered traits that influenced species use and persistence in the landscape. We refined maps of forest remnants and water bodies for metrics calculation. To relate DF and S (response variables) to landscape variables (explanatory variables), we used a model selection approach, fitting generalized linear models (GLMS) and making your selection with AICc. We compared the effect of model absence and models with habitat split, habitat amount and habitat connectivity effects, as well as their interaction. The most plausible models for S were the sum and interaction between habitat split in 7.5 km scale. For anurans with terrestrial development, habitat amount was the only plausible explanatory variable, in the 5 km scale. For anurans with aquatic larvae habitat amount in larger scales and the addition of habitat amount and habitat split were plausible...
Resumo:
Analytical methods accounting for imperfect detection are often used to facilitate reliable inference in population and community ecology. We contend that similar approaches are needed in disease ecology because these complicated systems are inherently difficult to observe without error. For example, wildlife disease studies often designate individuals, populations, or spatial units to states (e.g., susceptible, infected, post-infected), but the uncertainty associated with these state assignments remains largely ignored or unaccounted for. We demonstrate how recent developments incorporating observation error through repeated sampling extend quite naturally to hierarchical spatial models of disease effects, prevalence, and dynamics in natural systems. A highly pathogenic strain of avian influenza virus in migratory waterfowl and a pathogenic fungus recently implicated in the global loss of amphibian biodiversity are used as motivating examples. Both show that relatively simple modifications to study designs can greatly improve our understanding of complex spatio-temporal disease dynamics by rigorously accounting for uncertainty at each level of the hierarchy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Amphibian populations worldwide have been suffering declines generated by habitat degradation, loss, fragmentation and habitat split. With habitat loss and fragmentation in the landscape comes habitat split, which is the separation between the adult anuran habitat and breeding sites, forcing individuals to move through matrix during breeding seasons. Thus, habitat split increases the chance of extinction of amphibians with aquatic larval development and acts as a filter in the selection of species having great influence on species richness and community structure. The use of functional diversity allows us to consider the identity and characteristics of each species to understand the effects of fragmentation processes. The objective of this study was to estimate the effects of habitat split, as well as habitat loss in the landscape, on amphibians functional diversity (FD) and species richness (S). We selected 26 landscapes from a database with anuran surveys of Brazilian Atlantic Forest. For each landscape we calculated DF, S and landscape metrics at multiple scales. To calculate the DF we considered traits that influenced species use and persistence in the landscape. We refined maps of forest remnants and water bodies for metrics calculation. To relate DF and S (response variables) to landscape variables (explanatory variables), we used a model selection approach, fitting generalized linear models (GLMS) and making your selection with AICc. We compared the effect of model absence and models with habitat split, habitat amount and habitat connectivity effects, as well as their interaction. The most plausible models for S were the sum and interaction between habitat split in 7.5 km scale. For anurans with terrestrial development, habitat amount was the only plausible explanatory variable, in the 5 km scale. For anurans with aquatic larvae habitat amount in larger scales and the addition of habitat amount and habitat split were plausible...
Resumo:
Schistosomiasis is a neglected tropical disease that remains a considerable public health problem worldwide. Since the mainstay of schistosomiasis control is chemotherapy with a single drug, praziquantel, drug resistance is a concern. Here, we examined the in vitro effects of dermaseptin 01 (DS 01), an antimicrobial peptide found in the skin secretion of frogs of the genus Phyllomedusa, on Schistosoma mansoni adult worms. DS 01 at a concentration of 100 mg/ml reduced the worm motor activity and caused the death of all worms within 48 h in RPMI 1640 medium. At the highest sublethal concentration of antimicrobial peptide (75 mg/ml), a 100% reduction in egg output of paired female worms was observed. Additionally, DS 01 induced morphological alterations on the tegument of S. mansoni, and a quantitative analysis carried out by confocal microscopy revealed extensive destruction of the tubercles in a dose-dependent manner over the concentration range of 50-200 mu g/ml. It was the first time that an anthelmintic activity towards schistosomes has been reported for a dermaseptin.
Resumo:
Anuran amphibians are known to exhibit an intermittent pattern of pulmonary ventilation and to exhibit an increased ventilatory response to hypoxia and hypercarbia. However, only a few species have been studied to date. The aquatic frog Pipa carvalhoi inhabits lakes, ponds and marshes that are rich in nutrients but low in O-2. There are no studies of the respiratory pattern of this species and its ventilation during hypoxia or hypercarbia. Accordingly, the aim of the present study was to characterize the breathing pattern and the ventilatory response to aquatic and aerial hypoxia and hypercarbia in this species. With this purpose, pulmonary ventilation (V-1) was directly measured by the pneumotachograph method during normocapnic normoxia to determine the basal respiratory pattern and during aerial and aquatic hypercarbia (5% CO2) and hypoxia (5% O-2). Our data demonstrate that P. carvalhoi exhibits a periodic breathing pattern composed of single events (single breaths) of pulmonary ventilation separated by periods of apnea. The animals had an enhanced V-1 during aerial hypoxia, but not during aquatic hypoxia. This increase was strictly the result of an increase in the breathing frequency. A pronounced increase in V-1 was observed if the animals were simultaneously exposed to aerial and aquatic hypercarbia, whereas small or no ventilatory responses were observed during separately administered aerial or aquatic hypercarbia. P. carvalhoi primarily inhabits an aquatic environment. Nevertheless, it does not respond to low O-2 levels in water, although it does so in air. The observed ventilatory responses to hypercarbia may indicate that this species is similar to other anurans in possessing central chemoreceptors. (C) 2012 Elsevier Inc. All rights reserved.