988 resultados para AMMONIA DIFFUSION METHOD
Resumo:
Part of the optical clearing study in biological tissues concerns the determination of the diffusion characteristics of water and optical clearing agents in the subject tissue. Such information is sufficient to characterize the time dependence of the optical clearing mechanisms—tissue dehydration and refractive index (RI) matching. We have used a simple method based on collimated optical transmittance measurements made from muscle samples under treatment with aqueous solutions containing different concentrations of ethylene glycol (EG), to determine the diffusion time values of water and EG in skeletal muscle. By representing the estimated mean diffusion time values from each treatment as a function of agent concentration in solution, we could identify the real diffusion times for water and agent. These values allowed for the calculation of the correspondent diffusion coefficients for those fluids. With these results, we have demonstrated that the dehydration mechanism is the one that dominates optical clearing in the first minute of treatment, while the RI matching takes over the optical clearing operations after that and remains for a longer time of treatment up to about 10 min, as we could see for EG and thin tissue samples of 0.5 mm.
Resumo:
The study of chemical diffusion in biological tissues is a research field of high importance and with application in many clinical, research and industrial areas. The evaluation of diffusion and viscosity properties of chemicals in tissues is necessary to characterize treatments or inclusion of preservatives in tissues or organs for low temperature conservation. Recently, we have demonstrated experimentally that the diffusion properties and dynamic viscosity of sugars and alcohols can be evaluated from optical measurements. Our studies were performed in skeletal muscle, but our results have revealed that the same methodology can be used with other tissues and different chemicals. Considering the significant number of studies that can be made with this method, it becomes necessary to turn data processing and calculation easier. With this objective, we have developed a software application that integrates all processing and calculations, turning the researcher work easier and faster. Using the same experimental data that previously was used to estimate the diffusion and viscosity of glucose in skeletal muscle, we have repeated the calculations with the new application. Comparing between the results obtained with the new application and with previous independent routines we have demonstrated great similarity and consequently validated the application. This new tool is now available to be used in similar research to obtain the diffusion properties of other chemicals in different tissues or organs.
Resumo:
Dissertation to obtain the Master Degree in Biotechnology
Resumo:
Tese apresentada como requisito parcial para obtenção do grau de Doutor em Gestão de Informação
Resumo:
Laggards are the last users to adopt a product. Prior literature on user-led innovation ignores laggards’ impact on innovation. In this paper, we develop the Lag-User Method, through which laggards can generate new ideas. Through six studies with 62 teams in three countries, we apply the method to different technologies and services and present our findings to executives to get managerial insights. Findings reveal that laggards who generate new ideas (lag-users) have different perceptions of user-friendly products and different unfulfilled needs. They prefer simple products. We propose that by involving lag-users in NPD, firms can improve the effectiveness of NPD.
Resumo:
In this work we perform a comparison of two different numerical schemes for the solution of the time-fractional diffusion equation with variable diffusion coefficient and a nonlinear source term. The two methods are the implicit numerical scheme presented in [M.L. Morgado, M. Rebelo, Numerical approximation of distributed order reaction- diffusion equations, Journal of Computational and Applied Mathematics 275 (2015) 216-227] that is adapted to our type of equation, and a colocation method where Chebyshev polynomials are used to reduce the fractional differential equation to a system of ordinary differential equations
Resumo:
The equivalent annulus width concept is used to characterize a small commercial thermogravitational hermal diffusion column and its validity checked experimentally by separating batchwise in the column mixtures of n-heptanebenzene with different initial concentrations. The equation of Ruppell and Coull was used to analyse the data in the short separation times range and determine the equivalent annulus width. Good agreement was obtained between the experimental and predicted time-separation curves when using the equivalent annulus width value and on averaged value of the thermal diffusion constant. A new method is presented for the simultaneous determination of the equivalent annulus width and the thermal diffusion constant of a binary mixture from a single set of experimental data.
Resumo:
We investigate different models that are intended to describe the small mean free path regime of a kinetic equation, a particular attention being paid to the moment closure by entropy minimization. We introduce a specific asymptotic-induced numerical strategy which is able to treat the stiff terms of the asymptotic diffusive regime. We evaluate on numerics the performances of the method and the abilities of the reduced models to capture the main features of the full kinetic equation.
Stabilized Petrov-Galerkin methods for the convection-diffusion-reaction and the Helmholtz equations
Resumo:
We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.
Resumo:
At present, most Neisseria gonorrhoeae testing is done with ß-lactamase and agar dilution tests with common therapeutic agents. Generally, in bacteriological diagnosis laboratories in Argentina, study of antibiotic susceptibility of N.gonorrhoeae is based on ß-lactamase determination and agar dilution method with common therapeutic agents. The National Committee for Clinical Laboratory Standards (NCCLS) has recently described a disk diffusion test that produces results comparable to the reference agar dilution method for antibiotic susceptibility of N.gonorrhoeae, using a dispersion diagram for analyzing the correlation between both techniques. We obtained 57 gonococcal isolates from patients attending a clinic for sexually transmitted diseases in Tucumán, Argentina. Antibiotic susceptibility tests using agar dilution and disk diffusion techniques were compared. The established NCCLS interpretive criteria for both susceptibility methods appeared to be applicable to domestic gonococcal strains. The correlation between the MIC's and the zones of inhibition was studied for penicillin, ampicillin, cefoxitin, spectinomycin, cefotaxime, cephaloridine, cephalexin, tetracycline, norfloxacin and kanamycin. Dispersion diagrams showed a high correlation between both methods.
Resumo:
Estimating the time since the last discharge of firearms and/or spent cartridges may be a useful piece of information in forensic firearm-related cases. The current approach consists of studying the diffusion of selected volatile organic compounds (such as naphthalene) released during the shooting using solid phase micro-extraction (SPME). However, this technique works poorly on handgun car-tridges because the extracted quantities quickly fall below the limit of detection. In order to find more effective solutions and further investigate the aging of organic gunshot residue after the discharge of handgun cartridges, an extensive study was carried out in this work using a novel approach based on high capacity headspace sorptive extraction (HSSE). By adopting this technique, for the first time 51 gunshot residue (GSR) volatile organic compounds could be simultaneously detected from fired handgun cartridge cases. Application to aged specimens showed that many of those compounds presented significant and complementary aging profiles. Compound-to-compound ratios were also tested and proved to be beneficial both in reducing the variability of the aging curves and in enlarging the time window useful in a forensic casework perspective. The obtained results were thus particularly promising for the development of a new complete forensic dating methodology.
Resumo:
The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical component of normal motor function, it has become a key target for deep brain stimulation in the treatment of Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but these have never been shown conclusively in humans. In this work, a data driven method with diffusion weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain connectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good correspondence with that described in the animal literature. The local connectivity of each sub-region supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatomical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which has important future implications for deep brain stimulation surgery.
Resumo:
BACKGROUND: The cerebellum is a complex structure that can be affected by several congenital and acquired diseases leading to alteration of its function and neuronal circuits. Identifying the structural bases of cerebellar neuronal networks in humans in vivo may provide biomarkers for diagnosis and management of cerebellar diseases. OBJECTIVES: To define the anatomy of intrinsic and extrinsic cerebellar circuits using high-angular resolution diffusion spectrum imaging (DSI). METHODS: We acquired high-resolution structural MRI and DSI of the cerebellum in four healthy female subjects at 3T. DSI tractography based on a streamline algorithm was performed to identify the circuits connecting the cerebellar cortex with the deep cerebellar nuclei, selected brainstem nuclei, and the thalamus. RESULTS: Using in-vivo DSI in humans we were able to demonstrate the structure of the following cerebellar neuronal circuits: (1) connections of the inferior olivary nucleus with the cerebellar cortex, and with the deep cerebellar nuclei (2) connections between the cerebellar cortex and the deep cerebellar nuclei, (3) connections of the deep cerebellar nuclei conveyed in the superior (SCP), middle (MCP) and inferior (ICP) cerebellar peduncles, (4) complex intersections of fibers in the SCP, MCP and ICP, and (5) connections between the deep cerebellar nuclei and the red nucleus and the thalamus. CONCLUSION: For the first time, we show that DSI tractography in humans in vivo is capable of revealing the structural bases of complex cerebellar networks. DSI thus appears to be a promising imaging method for characterizing anatomical disruptions that occur in cerebellar diseases, and for monitoring response to therapeutic interventions.
Resumo:
Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach
Resumo:
High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.