971 resultados para ALS data-set


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we introduce a parametric model for handling lifetime data where an early lifetime can be related to the infant-mortality failure or to the wear processes but we do not know which risk is responsible for the failure. The maximum likelihood approach and the sampling-based approach are used to get the inferences of interest. Some special cases of the proposed model are studied via Monte Carlo methods for size and power of hypothesis tests. To illustrate the proposed methodology, we introduce an example consisting of a real data set.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we consider a location scale model for bivariate survival times based on the proposal of a copula to model the dependence of bivariate survival data. For the proposed model, we consider inferential procedures based on maximum likelihood. Gains in efficiency from bivariate models are also examined in the censored data setting. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the bivariate regression model for matched paired survival data. Sensitivity analysis methods such as local and total influence are presented and derived under three perturbation schemes. The martingale marginal and the deviance marginal residual measures are used to check the adequacy of the model. Furthermore, we propose a new measure which we call modified deviance component residual. The methodology in the paper is illustrated on a lifetime data set for kidney patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In survival analysis applications, the failure rate function may frequently present a unimodal shape. In such case, the log-normal or log-logistic distributions are used. In this paper, we shall be concerned only with parametric forms, so a location-scale regression model based on the Burr XII distribution is proposed for modeling data with a unimodal failure rate function as an alternative to the log-logistic regression model. Assuming censored data, we consider a classic analysis, a Bayesian analysis and a jackknife estimator for the parameters of the proposed model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the log-logistic and log-Burr XII regression models. Besides, we use sensitivity analysis to detect influential or outlying observations, and residual analysis is used to check the assumptions in the model. Finally, we analyze a real data set under log-Buff XII regression models. (C) 2008 Published by Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Measurement error models often arise in epidemiological and clinical research. Usually, in this set up it is assumed that the latent variable has a normal distribution. However, the normality assumption may not be always correct. Skew-normal/independent distribution is a class of asymmetric thick-tailed distributions which includes the Skew-normal distribution as a special case. In this paper, we explore the use of skew-normal/independent distribution as a robust alternative to null intercept measurement error model under a Bayesian paradigm. We assume that the random errors and the unobserved value of the covariate (latent variable) follows jointly a skew-normal/independent distribution, providing an appealing robust alternative to the routine use of symmetric normal distribution in this type of model. Specific distributions examined include univariate and multivariate versions of the skew-normal distribution, the skew-t distributions, the skew-slash distributions and the skew contaminated normal distributions. The methods developed is illustrated using a real data set from a dental clinical trial. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Flash points (T(FP)) of hydrocarbons are calculated from their flash point numbers, N(FP), with the relationship T(FP) (K) = 23.369N(FP)(2/3) + 20.010N(FP)(1/3) + 31.901 In turn, the N(FP) values can be predicted from experimental boiling point numbers (Y(BP)) and molecular structure with the equation N(FP) = 0.987 Y(BP) + 0.176D + 0.687T + 0.712B - 0.176 where D is the number of olefinic double bonds in the structure, T is the number of triple bonds, and B is the number of aromatic rings. For a data set consisting of 300 diverse hydrocarbons, the average absolute deviation between the literature and predicted flash points was 2.9 K.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We estimate the effect of employment density on wages in Sweden in a large geocoded data set on individuals and workplaces. Employment density is measured in four circular zones around each individual’s place of living. The data contains a rich set of control variables that we use in an instrumental variables framework. Results show a relatively strong but rather local positive effect of employment density on wages. Beyond 5 kilometers the effect becomes negative. This might indicate that the effect of agglomeration economies falls faster with distance than the effects of congestion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Jakarta is vulnerable to flooding mainly caused by prolonged and heavy rainfall and thus a robust hydrological modeling is called for. A good quality of spatial precipitation data is therefore desired so that a good hydrological model could be achieved. Two types of rainfall sources are available: satellite and gauge station observations. At-site rainfall is considered to be a reliable and accurate source of rainfall. However, the limited number of stations makes the spatial interpolation not very much appealing. On the other hand, the gridded rainfall nowadays has high spatial resolution and improved accuracy, but still, relatively less accurate than its counterpart. To achieve a better precipitation data set, the study proposes cokriging method, a blending algorithm, to yield the blended satellite-gauge gridded rainfall at approximately 10-km resolution. The Global Satellite Mapping of Precipitation (GSMaP, 0.1⁰×0.1⁰) and daily rainfall observations from gauge stations are used. The blended product is compared with satellite data by cross-validation method. The newly-yield blended product is then utilized to re-calibrate the hydrological model. Several scenarios are simulated by the hydrological models calibrated by gauge observations alone and blended product. The performance of two calibrated hydrological models is then assessed and compared based on simulated and observed runoff.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this article is to assess the role of real effective exchange rate volatility on long-run economic growth for a set of 82 advanced and emerging economies using a panel data set ranging from 1970 to 2009. With an accurate measure for exchange rate volatility, the results for the two-step system GMM panel growth models show that a more (less) volatile RER has significant negative (positive) impact on economic growth and the results are robust for different model specifications. In addition to that, exchange rate stability seems to be more important to foster long-run economic growth than exchange rate misalignment

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Housing is an important component of wealth for a typical household in many countries. The objective of this paper is to investigate the effect of real-estate price variation on welfare, trying to close a gap between the welfare literature in Brazil and that in the U.S., the U.K., and other developed countries. Our first motivation relates to the fact that real estate is probably more important here than elsewhere as a proportion of wealth, which potentially makes the impact of a price change bigger here. Our second motivation relates to the fact that real-estate prices boomed in Brazil in the last five years. Prime real estate in Rio de Janeiro and São Paulo have tripled in value in that period, and a smaller but generalized increase has been observed throughout the country. Third, we have also seen a recent consumption boom in Brazil in the last five years. Indeed, the recent rise of some of the poor to middle-income status is well documented not only for Brazil but for other emerging countries as well. Regarding consumption and real-estate prices in Brazil, one cannot imply causality from correlation, but one can do causal inference with an appropriate structural model and proper inference, or with a proper inference in a reduced-form setup. Our last motivation is related to the complete absence of studies of this kind in Brazil, which makes ours a pioneering study. We assemble a panel-data set for the determinants of non-durable consumption growth by Brazilian states, merging the techniques and ideas in Campbell and Cocco (2007) and in Case, Quigley and Shiller (2005). With appropriate controls, and panel-data methods, we investigate whether house-price variation has a positive effect on non-durable consumption. The results show a non-negligible significant impact of the change in the price of real estate on welfare consumption), although smaller then what Campbell and Cocco have found. Our findings support the view that the channel through which house prices affect consumption is a financial one.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The papers aims at considering the issue of relative efficiency measurement in the context of the public sector. In particular, we consider the efficiency measurement approach provided by Data Envelopment Analysis (DEA). The application considered the main Brazilian federal universities for the year of 1994. Given the large number of inputs and outputs, this paper advances the idea of using factor analysis to explore common dimensions in the data set. Such procedure made possible a meaningful application of DEA, which finally provided a set of efficiency scores for the universities considered .

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of the present study was to investigate the effect of data structure on estimated genetic parameters and predicted breeding values of direct and maternal genetic effects for weaning weight (WW) and weight gain from birth to weaning (BWG), including or not the genetic covariance between direct and maternal effects. Records of 97,490 Nellore animals born between 1993 and 2006, from the Jacarezinho cattle raising farm, were used. Two different data sets were analyzed: DI_all, which included all available progenies of dams without their own performance; DII_all, which included DI_all + 20% of recorded progenies with maternal phenotypes. Two subsets were obtained from each data set (DI_all and DII_all): DI_1 and DII_1, which included only dams with three or fewer progenies; DI_5 and DII_5, which included only dams with five or more progenies. (Co)variance components and heritabilities were estimated by Bayesian inference through Gibbs sampling using univariate animal models. In general, for the population and traits studied, the proportion of dams with known phenotypic information and the number of progenies per dam influenced direct and maternal heritabilities, as well as the contribution of maternal permanent environmental variance to phenotypic variance. Only small differences were observed in the genetic and environmental parameters when the genetic covariance between direct and maternal effects was set to zero in the data sets studied. Thus, the inclusion or not of the genetic covariance between direct and maternal effects had little effect on the ranking of animals according to their breeding values for WW and BWG. Accurate estimation of genetic correlations between direct and maternal genetic effects depends on the data structure. Thus, this covariance should be set to zero in Nellore data sets in which the proportion of dams with phenotypic information is low, the number of progenies per dam is small, and pedigree relationships are poorly known. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article, proportional hazards and logistic models for grouped survival data were extended to incorporate time-dependent covariates. The extension was motivated by a forestry experiment designed to compare five different water stresses in Eucalyptus grandis seedlings. The response was the seedling lifetime. The data set was grouped since there were just three occasions in which the seedlings was visited by the researcher. In each of these occasions also the shoot height was measured and therefore it is a time-dependent covariate. Both extended models were used in this example, and the results were very similar.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objetivou-se com este trabalho estimar a influência da idade da vaca ao parto (IDV) e da data juliana de nascimento (DJN) sobre o peso à desmama (PD) e a média do ganho diário no período pré-desmama (GMD) de bezerros Gir, determinando fatores de correção para estes efeitos. Foram analisados 10.685 e 18.339 dados de PD e GMD de bezerros Gir, provenientes do Arquivo da Associação Brasileira dos Criadores de Zebu (ABCZ), pertencentes a 1229 e 1979 grupos contemporâneos (GC), respectivamente. PD e GMD foram pré-ajustados para o efeito da idade do bezerro à desmama. O efeito de IDV sobre PD e GMD foi modelado como polinômio segmentado quadrático-quadrático-quadrático, com nós, ou pontos de junção aos 4,1; 12,7 e 4,0; 8,2 anos, respectivamente, para machos e como polinômio segmentado quadrático-quadrático, com nó, ou ponto de junção aos 3,8 anos, para fêmeas sobre as duas características. A DJN foi modelada como um polinômio segmentado quadrático-quadrático com nó aos 126 dias para PD e 167 dias para GMD. Os resultados mostraram que a determinação dos fatores de correção para IDV deve ser feita, separadamente, para machos e fêmeas e, para DJN, deve-se considerar cada estação do ano, para que as diferenças entre elas sejam bem observadas. Os fatores de correção para o efeito da idade da vaca variaram de 0,94750 a 1,08033 sobre PD e 0,91714 a 1,07689 sobre GMD, para machos, e de 0,90937 a 1,07415 sobre PD e 0,96055 a 1,14007 sobre GMD, para fêmeas. Para o efeito de DJN, a amplitude foi de 0,9256 a 1,0340 sobre PD e 0,9112 a 1,0551 sobre GMD.