898 resultados para ACE polymorphism
Resumo:
Crystal structure and polymorphism induced by uniaxial drawing of a poly(aryl ether ketone) [PEDEKmK] prepared from 1,3-bis(4-fluorobenzoyl)benzene and biphenyl-4,4'-diol have been investigated by means of transmission electron microscopy (TEM), electron diffraction (ED), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC) techniques. The melting and recrystallization process in the temperature range of 250-260 degrees C, far below the next melting temperature (306 degrees C), was identified and found to be responsible for the remarkable changes in lamellar morphology. Based on WAXD and ED patterns, it was found that crystal structure of isotropic-crystalline PEDEKmK obtained under different crystallization conditions (melt-crystallization, cold-crystallization, solvent-induced crystallization, melting-recrystallization, and crystallization from solution) keeps the same mode of packing, i.e., a two-chain orthorhombic unit cell with the dimensions a = 0.784 nm, b = 0.600 nm, and c = 4.745 nm (form I). A second crystal modification (form II) can be induced by uniaxial drawing above the glass transition temperature, and always coexists with form I. This form also possesses an orthorhombic unit cell but with different dimensions, i.e., a = 0.470 nm, b = 1.054 nm, c = 5.064 nm. The 0.32 nm longer c-axis of form II as compared with form I is attributed to an overextended chain conformation due to the expansion of ether and ketone bridge bond angles during uniaxial drawing. The temperature dependence of WAXD patterns for the drawn PEDEKmK suggests that form II can be transformed into the more stable form I by relaxation of overextended chains and relief of internal stress at elevated temperature in absence of external tension.
Resumo:
The influence of lanthanum ions on the polymorphic phase of egg phosphatidylethanolamine and dielaidoylphosphatidylethanolamine (PE and DEPE) has been investigated by means of P-31-nuclear magnetic resonance (P-31-NMR) and high sensitivity differential scanning calorimetry (DSC) techniques. P-31-NMR experiments show that lanthanum ions promote the formation of the hexagonal II phase at temperatures lower than those of the pure egg PE, DSC results also show that lanthanum ions induce the formation of hexagonal II phase in DEPE liposomes even al very low ion concentration, The effect of lanthanum ions on the polymorphism of PE liposomes is much greater than that of calcium.
Resumo:
To establish a molecular-marker-assisted system of breeding and genetic study for Laminaria japonica Aresch., amplified fragment length polymorphism (AFLP) was used to construct a genetic linkage map of L. japonica featuring 230 progeny of F-2 cross population. Eighteen primer combinations produced 370 polymorphic loci and 215 polymorphic loci segregated in a 3:1 Mendelian segregation ratio (P <= 0.05). Of the 215 segregated loci, 142 were ordered into 27 linkage groups. The length of the linkage groups ranged from 6.7 to 90.3 centimorgans (cM) with an average length of 49.6 cM, and the total length was 1,085.8 cM, which covered 68.4% of the estimated 1,586.9 cM genome. The number of mapped markers on each linkage group ranged from 2 to 12, averaging 5.3 markers per group. The average density of the markers was 1 per 9.4 cM. Based on the marker density and the resolution of the map, the constructed linkage map can satisfy the need for quantitative trait locus (QTL) location and molecular-marker-assisted breeding for Laminaria.
Resumo:
The haploid stage of gametophytes of the subtidal brown alga Undaria pinnatifida can be vegetatively propagated under favorable conditions. This unique characteristic makes it possible to establish independent gametophyte cell lines that are zoospore-derived. Sporophytic offspring can be generated through hybridizing the male and female gametophytes, which are derived from different cell lines. Accumulated experiences in this and other species in Laminariales demonstrated the applicability of this novel way to breed desired strains for open-sea cultivation. Sporophytic offspring originated from mono-crossing of male and female gametophyte clones were shown to have similar morphological characteristics under identical ambient conditions. However, there has been no report to relate this similarity on molecular levels. In this report, amplified fragment length polymorphism (AFLP) and microsatellite markers were used to analyze the genetic identity of sporophytic offspring of U. pinnatifida originated from two mono-crossing lines (M1 and M2), two self-breeding lines (S1 and S2) and one wild population (W). Totally 318 AFLP loci were revealed by use of 11 primer sets, of which 4.7%, 0.3%, 17.9%, 16.4% and 36.5% were polymorphic in M1, M2, S1, S2 and W, respectively. The pairwise genetic identity among the individuals of the same line was assessed. It was shown that offspring from mono-crossing lines had a higher degree of identity (95.6-100%) than self-breeding lines (87.7-98.4%) and the wild population (81.5-92.1%). Analysis by use of six microsatellite loci also revealed a higher genetic identity among individuals of the mono-crossing line, further confirming the results of AFLP analysis. Results from this investigation support, on molecular levels, the novel way to produce and maintain strains in U. pinnatifida by use of different gametophyte cell lines.
Resumo:
Lysozyme functions as a crucial biodefence effector against the infection of bacterial pathogens in innate immunity. The nucleotide sequence polymorphisms in promoter region of a nuclear goose type lysozyme gene from Zhikong scallop Chlamys farreri (designated as CFLysG) were investigated to explore their association with susceptibility/resistance to Listonella anguillarum infection. Eight sites of single nucleotide polymorphisms (SNPs) and two sites of insert-deletion (ins-del) polymorphisms were identified in the promoter region of CFLysG. Two of them, -753 TATCTCGATCAGG ins-del polymorphism and -391 A-G SNP were selected to analyze their distribution in the susceptible and resistant stocks, which were identified according to the survival time after L. anguillarum challenge. Using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), two genotypes were found at each site, which were ins/del and ins/ins at locus -753, and A/A and A/G at locus -391, respectively. The -753 ins/del genotype was more prevalent in the resistant stock than that in the susceptible stock, 30% vs 16.67% in frequency, but there was no significant difference in the frequency distribution between these two stocks (P=0.15). In contrast, the frequency of -391A/G genotype in the resistant stock was significantly higher (30%) than that in the susceptible stock (7.14%) (P=0.007), indicating a significant association with the resistance of Zhikong scallop to L anguillarum. To confirm the presumption, another independent challenge experiment was performed, in which the cumulative mortality of scallops with -391 A/A genotype (96.8%) was significantly higher than those with -391 A/G genotype (64.5%) (P=0.001), which further validate the association between -391 A/G genotype and the resistance of Zhikong scallop to L anguillarum. These results suggested that the -391 A/G could be a potential marker applied in future selection of Zhikong scallop with enhanced resistance to L anguillarum. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Sequence-related amplified polymorphism (SRAP) is a novel molecular marker technique designed to amplify open reading frames (ORFs). The SRAP analytic system was set up and applied to Porphyra germplasm identification in this study for the first time. Sixteen Porphyra lines were screened by SRAP technique with 30 primer combinations. In the analysis, 14 primer combinations produced stable and reproducible amplification patterns in three repetitive experiments. Among the total 533 amplified fragments, 522 (98%) were polymorphic, with an average of 38 fragments for each primer combination, ranging in size from 50 to 500 bp. The 533 fragments were visually scored one by one and then used to develop a dendrogram with Unweighted Pair-Group Method Arithmetic Average (UPGMA), and the 16 Porphyra lines were divided into two major groups at the 0.68 similarity level. From the total 533 fragments, I I amplified by two primer combinations, ME1/EM1 and ME4/EM6, were used to develop the DNA fingerprints of the 16 Porphyra lines. The DNA fingerprints were then converted into binary codes, with I and 0 representing presence and absence of the corresponding amplified fragment, respectively. In the DNA fingerprints, each of the 16 Porphyra lines has its unique binary code and can be easily distinguished from the others. This is the first report on the development of SRAP technique and its utilization in germplasm identification of seaweeds. The results demonstrated that SRAP is a simple, stable, polymorphic and reproducible molecular marker technique for the classification and identification of Porphyra lines. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
With a "two-way pseudo-testcross" mapping strategy, we applied the amplified fragment length polymorphism (AFLP) markers to construct two moderate density genetic linkage maps for Laminaria. The linkage maps were generated from the 60 progenies of the F, cross family (Laminaria longissima Aresch. x L. japonica Miyabe) with twenty pairs of primer combinations. Of the 333 polymorphic loci scored in 60 progenies, 173 segregated in a 1:1 ratio, corresponding to DNA polymorphisms heterozygous in a single parent, and the other 58 loci existing in both parents followed a 3:1 Mendelian segregation ratio. Among the loci with 1:1 segregating ratios, 79 loci were ordered in 14 linkage groups (648.6 cM) of the paternal map, and 72 loci were ordered in 14 linkage groups (601.9 cM) of the maternal map. The average density of loci was approximately 1 per 8 cM. To investigate the homologies between two parental maps, we used 58 loci segregated 3:1 for further analysis, and deduced one homologous linkage group. The linkage data developed in these maps will be useful for detecting loci-controlling commercially important traits for Laminaria.
Resumo:
Amplified fragment length polymorphisms (AFLP) were used to study the inheritance of shell color in Argopecten irradians. Two scallops, one with orange and the other with white shells, were used as parents to produce four F-1 families by selfing and outcrossing. Eighty-eight progeny, 37 orange and 51 white, were randomly selected from one of the families for segregation and mapping analysis with AFLP and microsatellite markers. Twenty-five AFLP primer pairs were screened, yielding 1138 fragments, among which 148 (13.0%) were polymorphic in two parents and segregated in progeny. Six AFLP markers showed significant (P < 0.05) association with shell color. All six loci were mapped to one linkage group. One of the markers, F1f335, is completely linked to the gene for orange shell, which we designated as Orange1, without any recombination in the progeny we sampled. The marker was amplified in the orange parent and all orange progeny, but absent in the white parent and all the white progeny. The close linkage between F1f335 and Orange1 was validated using bulk segregation analysis in two natural populations, and all our data indicate that F1f335 is specific for the shell color gene, Orange1. The genomic mapping of a shell color gene in bay scallop improves our understanding of shell color inheritance and may contribute to the breeding of molluscs with desired shell colors.
Resumo:
In an effort to develop genetic markers for oyster identification, we studied length polymorphism in internal transcribed spacers (ITS) between major ribosomal RNA genes in 12 common species of Ostreidae: Crassostrea virginica, C. rhizophorae, C. gigas, C. angulata, C. sikamea, C. ariakensis, C. hongkongensis, Saccostrea echinata, S. glomerata, Ostrea angasi, O. edulis, and O. conchaphila. We designed two pairs of primers and optimized PCR conditions for simultaneous amplification of ITS 1 and ITS2 in a single PCR. Amplification was successful in all 12 species, and PCR products were visualized on high-resolution agarose gels. ITS2 was longer than ITS 1 in all Crassostrea and Saccostrea species, whereas they were about the same size in the three Ostrea species. No intraspecific variation in ITS length was detected. Among species, the length of ITS I and ITS2 was polymorphic and provided unique identification of 8 species or species pairs: C. ariakensis, C. hongkongensis, C. sikamea, O. conchaphila, C. virginica/C. rhizophorae, C. gigas/C. angulata, S. echinata/S. glonzerata, and O. angasi/O. edulis. The ITS assay provides simple, rapid and effective identification of C. ariakensis and several other oyster species. Because the primer sequences are conserved, the ITS assay may be useful in the identification of other bivalve species.
Resumo:
In order to study the role of inherited factors and Type A Behavior Pattern (TABP) in the development of CHD, the present study chose the angiotensin I-converting enzyme (ACE) gene as the target gene, and investigated the associations of TABP, the polymorphism of ACE gene with susceptibility to development of CHD in the healthy population and CHD patients from Northern China. 1. Correlation Analysis Between TABP and serum level of ACE in Chinese healthy individuals TABP and serum of ACE were determined in 137 Chinese healthy individuals. The results showed that there was a significant correlation between the scores of CH in TABP invertory and the serum level of ACE. 2 The distribution charicteristics of ACE gene polymorphism frequencies and association with serum level of ACE in Chinese healthy individuals population The polymorphism of ACE gene and serum of ACE were determined in 137 Chinese healthy individuals. The results showed that: the ethnic differences in I/D polymorphism of ACE gene are obvious; deletion polymorphism of the ACE gene is associated with serum ACE level. 3. The relationship between insertion/deletion polymorphism of ACE gene and CHD in a Chinese population I/D polymorphism in intron 16 of the ACE gene was determined by polymerase chain reaction(PCR) in a study of 109 patients with CHD. The results showed: The frequencies of DD genotype(0.39) and D allele(0.63) were higher among the CHD group than among the control subjects(0.12 and 0.42 respectively, P < 0.01). Furthermore, MI and multivessel disease was more strongly associated with (P < 0.01). It is indicated that D allele and DD gentype of ACE might be an important risk factor for CHD, especially for MI or multivessel disease in Chinese population. 4. Correlation Analysis Between Type A Behavior Pattern and the Polymorphism of ACE Gene The polymorphism of ACE gene and type A behavior pattern (TABP) survey were determined in 291 Chinese healthy individuals. The result showed that the higher frequency of rare D allele of an insertion/deletion (I/D) polymorphism of the angiotensin I-converting enzyme (ACE) gene was found in type A behavior individuals compared with type B behavior individuals in 291 healthy individuals; there was a significant correlation between the scores of CH in TABP invertory and DD genotype of the ACE gene. It is suggested that the behavioral attributes of competitiveness, achievement striving, hostility, being irritated easily and impatience may be associated with heredity. 5. Correlation Analysis Between Angiotensin I-Converting Enzyme Gene Polymorphism, Type A Behavior Pattern and Coronary Heart Disease in Chinese The polymorphism of ACE gene and type A behavior pattern (TABP) survey were determined in 109 patients with CHD. The results showed the development of coronary heart disease(CHD) is influenced mainly by the behavioral attributes of competitiveness, achievement striving, hostility, being irritated easily and impatience; the deletion polymorphism of ACE gene may be play a important role in the process of it. 6. Correlation Analysis Between Type A Behavior Pattern Core Components and the Polymorphism of ACE Gene The polymorphism of ACE gene and type A behavior pattern (TABP) survey were determined in1306 Chinese healthy individuals. The results showed that there was a significant correlation between the scores of CH in TABP invertory and DD genotype of the ACE gene. Furthermore, the behavioral attributes of hostility, being irritated easily and impatience may be associated with heredity. At the end of this research, in terms of theory, the research approaches of TABP and the factors influenced the relationship between TABP and CHD were explored and discussed. Furthermore, several new opinions were put forward.
Resumo:
Western populations are living longer. Ageing decline in muscle mass and strength (i.e. sarcopenia) is becoming a growing public health problem, as it contributes to the decreased capacity for independent living. It is thus important to determine those genetic factors that interact with ageing and thus modulate functional capacity and skeletal muscle phenotypes in older people. It would be also clinically relevant to identify 'unfavourable' genotypes associated with accelerated sarcopenia. In this review, we summarized published information on the potential associations between some genetic polymorphisms and muscle phenotypes in older people. A special emphasis was placed on those candidate polymorphisms that have been more extensively studied, i.e. angiotensin-converting enzyme (ACE) gene I/D, α-actinin-3 (ACTN3) R577X, and myostatin (MSTN) K153R, among others. Although previous heritability studies have indicated that there is an important genetic contribution to individual variability in muscle phenotypes among old people, published data on specific gene variants are controversial. The ACTN3 R577X polymorphism could influence muscle function in old women, yet there is controversy with regards to which allele (R or X) might play a 'favourable' role. Though more research is needed, up-to-date MSTN genotype is possibly the strongest candidate to explain variance among muscle phenotypes in the elderly. Future studies should take into account the association between muscle phenotypes in this population and complex gene-gene and gene-environment interactions.
Resumo:
The role of chromosomal inversions in adaptation and speciation is controversial. Historically, inversions were thought to contribute to these processes either by directly causing hybrid sterility or by facilitating the maintenance of co-adapted gene complexes. Because inversions suppress recombination when heterozygous, a recently proposed local adaptation mechanism predicts that they will spread if they capture alleles at multiple loci involved in divergent adaptation to contrasting environments. Many empirical studies have found inversion polymorphisms linked to putatively adaptive phenotypes or distributed along environmental clines. However, direct involvement of an inversion in local adaptation and consequent ecological reproductive isolation has not to our knowledge been demonstrated in nature. In this study, we discovered that a chromosomal inversion polymorphism is geographically widespread, and we test the extent to which it contributes to adaptation and reproductive isolation under natural field conditions. Replicated crosses between the prezygotically reproductively isolated annual and perennial ecotypes of the yellow monkeyflower, Mimulus guttatus, revealed that alternative chromosomal inversion arrangements are associated with life-history divergence over thousands of kilometers across North America. The inversion polymorphism affected adaptive flowering time divergence and other morphological traits in all replicated crosses between four pairs of annual and perennial populations. To determine if the inversion contributes to adaptation and reproductive isolation in natural populations, we conducted a novel reciprocal transplant experiment involving outbred lines, where alternative arrangements of the inversion were reciprocally introgressed into the genetic backgrounds of each ecotype. Our results demonstrate for the first time in nature the contribution of an inversion to adaptation, an annual/perennial life-history shift, and multiple reproductive isolating barriers. These results are consistent with the local adaptation mechanism being responsible for the distribution of the two inversion arrangements across the geographic range of M. guttatus and that locally adaptive inversion effects contribute directly to reproductive isolation. Such a mechanism may be partially responsible for the observation that closely related species often differ by multiple chromosomal rearrangements.
Resumo:
The objective of this study was to determine if MTND2*LHON4917G (4917G), a specific non-synonymous polymorphism in the mitochondrial genome previously associated with neurodegenerative phenotypes, is associated with increased risk for age-related macular degeneration (AMD). A preliminary study of 393 individuals (293 cases and 100 controls) ascertained at Vanderbilt revealed an increased occurrence of 4917G in cases compared to controls (15.4% vs.9.0%, p = 0.11). Since there was a significant age difference between cases and controls in this initial analysis, we extended the study by selecting Caucasian pairs matched at the exact age at examination. From the 1547 individuals in the Vanderbilt/Duke AMD population association study (including 157 in the preliminary study), we were able to match 560 (280 cases and 280 unaffected) on exact age at examination. This study population was genotyped for 4917G plus specific AMD-associated nuclear genome polymorphisms in CFH, LOC387715 and ApoE. Following adjustment for the listed nuclear genome polymorphisms, 4917G independently predicts the presence of AMD (OR = 2.16, 95%CI 1.20-3.91, p = 0.01). In conclusion, a specific mitochondrial polymorphism previously implicated in other neurodegenerative phenotypes (4917G) appears to convey risk for AMD independent of recently discovered nuclear DNA polymorphisms.
Resumo:
Previously we have shown that a functional nonsynonymous single nucleotide polymorphism (rs6318) of the 5HTR2C gene located on the X-chromosome is associated with hypothalamic-pituitary-adrenal axis response to a stress recall task, and with endophenotypes associated with cardiovascular disease (CVD). These findings suggest that individuals carrying the rs6318 Ser23 C allele will be at higher risk for CVD compared to Cys23 G allele carriers. The present study examined allelic variation in rs6318 as a predictor of coronary artery disease (CAD) severity and a composite endpoint of all-cause mortality or myocardial infarction (MI) among Caucasian participants consecutively recruited through the cardiac catheterization laboratory at Duke University Hospital (Durham, NC) as part of the CATHGEN biorepository. Study population consisted of 6,126 Caucasian participants (4,036 [65.9%] males and 2,090 [34.1%] females). A total of 1,769 events occurred (1,544 deaths and 225 MIs; median follow-up time = 5.3 years, interquartile range = 3.3-8.2). Unadjusted Cox time-to-event regression models showed, compared to Cys23 G carriers, males hemizygous for Ser23 C and females homozygous for Ser23C were at increased risk for the composite endpoint of all-cause death or MI: Hazard Ratio (HR) = 1.47, 95% confidence interval (CI) = 1.17, 1.84, p = .0008. Adjusting for age, rs6318 genotype was not related to body mass index, diabetes, hypertension, dyslipidemia, smoking history, number of diseased coronary arteries, or left ventricular ejection fraction in either males or females. After adjustment for these covariates the estimate for the two Ser23 C groups was modestly attenuated, but remained statistically significant: HR = 1.38, 95% CI = 1.10, 1.73, p = .005. These findings suggest that this functional polymorphism of the 5HTR2C gene is associated with increased risk for CVD mortality and morbidity, but this association is apparently not explained by the association of rs6318 with traditional risk factors or conventional markers of atherosclerotic disease.
Resumo:
Determination of copy number variants (CNVs) inferred in genome wide single nucleotide polymorphism arrays has shown increasing utility in genetic variant disease associations. Several CNV detection methods are available, but differences in CNV call thresholds and characteristics exist. We evaluated the relative performance of seven methods: circular binary segmentation, CNVFinder, cnvPartition, gain and loss of DNA, Nexus algorithms, PennCNV and QuantiSNP. Tested data included real and simulated Illumina HumHap 550 data from the Singapore cohort study of the risk factors for Myopia (SCORM) and simulated data from Affymetrix 6.0 and platform-independent distributions. The normalized singleton ratio (NSR) is proposed as a metric for parameter optimization before enacting full analysis. We used 10 SCORM samples for optimizing parameter settings for each method and then evaluated method performance at optimal parameters using 100 SCORM samples. The statistical power, false positive rates, and receiver operating characteristic (ROC) curve residuals were evaluated by simulation studies. Optimal parameters, as determined by NSR and ROC curve residuals, were consistent across datasets. QuantiSNP outperformed other methods based on ROC curve residuals over most datasets. Nexus Rank and SNPRank have low specificity and high power. Nexus Rank calls oversized CNVs. PennCNV detects one of the fewest numbers of CNVs.