977 resultados para AC electric field


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract not available

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a tunable alternating current electrohydrodynamic (ac-EHD) force which drives lateran fluid motion within a few nanometers of an electrode surface. Because the magnitude of this fluid shear force can be tuned externally (e.g., via the application of an ac electric field), it provides a new capability to physically displace weakly (nonspecifically) bound cellular analytes. To demonstrate the utility of the tunable nanoshearing phenomenon, we present data on purpose-built microfluidic devices that employ ac-EHD force to remove nonspecific adsorption of molecular and cellular species. Here, we show that an ac-EHD device containing asymmetric planar and microtip electrode pairs resulted in a 4-fold reduction in nonspecific adsorption of blood cells and also captured breast cancer cells in blood, with high efficiency (approximately 87%) and specificity. We therefore feel that this new capability of externally tuning and manipulating fluid flow could have wide applications as an innovative approach to enhance the specific capture of rare cells such as cancer cells in blood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a new mechanism for the propulsion and separation by chirality of small ferromagnetic particles suspended in a liquid. Under the action of a uniform dc magnetic field H and an ac electric field E isomers with opposite chirality move in opposite directions. Such a mechanism could have a significant impact on a wide range of emerging technologies. The component of the chiral velocity that is odd in H is found to be proportional to the intrinsic orbital and spin angular momentum of the magnetized electrons. This effect arises because a ferromagnetic particle responds to the applied torque as a small gyroscope. © 2012 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La-graded heterostructure films were prepared by sol-gel technique on platinum substrates and electrical properties of these films were compared with those of conventional thin films of similar compositions. X-ray diffraction results indicate the pure perovskite polycrystalline structure of these films. Atomic Force Microscopy analysis revealed a finer grain size and relatively lower surface roughness. Relatively higher values of Pm and Pr (69 and 38 ?C cm?2, respectively) and excellent dielectric properties with lower loss (K=1900, tan ?=0.035 at 100 kHz) were observed for La-graded heterostructure films. Also lower leakage current density (not, vert, similar2.5 nA cm?2) and a higher onset field (not, vert, similar50 kV cm?1) of space charge conduction indicated higher breakdown strength and good leakage current characteristics. The ac electric field dependence of the permittivity at sub-switching fields was analyzed in the framework of the Rayleigh dynamics of domain walls. The estimated irreversible domain wall displacement contribution to the total dielectric permittivity was 17 and 9% for conventional 15 at.% La doped PbTiO3 and La-graded heterostructure films, respectively. The improved dielectric and polarization behavior of La-graded heterostructure films may be attributed to homogenous dopant distribution compared to the conventional 15 at.% La doped PbTiO3 films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the characterization of an integrated micro-fluidic platform for controlled electrical lysis of biological cells and subsequent extraction of intracellular biomolecules. The proposed methodology is capable of high throughput electrical cell lysis facilitated by nano-composite coated electrodes. The nano-composites are synthesized using Carbon Nanotube and ZnO nanorod dispersion in polymer. Bacterial cells are used to demonstrate the lysis performance of these nanocomposite electrodes. Investigation of electrical lysis in the microchannel is carried out under different parameters, one with continuous DC application and the other under DC biased AC electric field. Lysis in DC field is dependent on optimal field strength and governed by the cell type. By introducing the AC electrical field, the electrokinetics is controlled to prevent cell clogging in the micro-channel and ensure uniform cell dispersion and lysis. Lysis mechanism is analyzed with time-resolved fluorescence imaging which reveal the time scale of electrical lysis and explain the dynamic behavior of GFP-expressing E. coli cells under the electric field induced by nanocomposite electrodes. The DNA and protein samples extracted after lysis are compared with those obtained from a conventional chemical lysis method by using a UV-Visible spectroscopy and fluorimetry. The paper also focuses on the mechanistic understanding of the nano-composite coating material and the film thickness on the leakage charge densities which lead to differential lysis efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relations between the rheological and electrical properties of NaY zeolite electrorheological fluid and its solid phase are studied. It is found that then exist complex relations between its electrical and theological properties. The temperature spectra of dielectric properties of the fluid under high AC electric field are strongly field strength dependent. The relation between the DC conductivity of the fluid and the exciting electric field is experimentally presented as log sigma =A+BE1/2, when A is a strong function, but B, a very weak function of temperature. The shear stress of the fluid under a fixed electric field and temperature decreases with shear rate. A relaxation time for the adsorbed charges is estimated to be about 0.3 to 6.6 s in the temperature range from 280 to 380 K. The relaxation time qualitatively corresponds to the shear rate at which the shear stress begins to drop. The time dependent leaking current of the ER fluids under DC electric field is also measured. The conductivity increase is mainly caused by the structure evolution of particles. The experimental results can he explained with the calculations of Davis (J. Appl. Phys. 81(1997) pp.1985-1991) and Martin (J. Chem. Phys. 110(1999) pp.4854-4866). It is predicted that the NaY zeolite ER fluid strength would get degraded slowly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing demand for high performance composites with enhanced mechanical and electrical properties. Carbon nanofibres offer a promising solution but their effectiveness has been limited by difficulty in achieving directional alignment. Here we report the use of an alternating current (AC) electric field to align carbon nanofibres in an epoxy. During the cure process of an epoxy resin, carbon nanofibres (CNFs) are observed to rotate and align with the applied electric field, forming a chain-like structure. The fracture energies of the resultant epoxy nanocomposites containing different concentrations of CNFs (up to 1.6wt%) are measured using double cantilever beam specimens. The results show that the addition of 1.6wt% of aligned CNFs increases the electrical conductivity of such nanocomposites by about seven orders of magnitudes to 10<sup>-2</sup>S/m and increases the fracture energy, G<inf>Ic</inf>, by about 1600% from 134 to 2345J/m<sup>2</sup>. A modelling technique is presented to quantify this major increase in the fracture energy with aligned CNFs. The results of this research open up new opportunities to create multi-scale composites with greatly enhanced multifunctional properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper compares improvements to the fracture energy and electrical conductivity of epoxy nanocomposites reinforced by one-dimensional carbon nanofibres (CNFs) or two-dimensional graphene nanoplatelets (GNPs). The focus of this investigation is on the effects of the shape, orientation and concentration (i.e. 0.5, 1.0, 1.5 and 2.0 wt%) of nanoscale carbon reinforcements on the property improvements. Alignment of the nano-reinforcements in the epoxy nanocomposites was achieved through the application of an alternating current (AC) electric-field before gelation and curing of the epoxy resin. Alignment of the nano-reinforcements increased the electrical conductivity and simultaneously lowered the percolation threshold necessary to form a conductive network in the nanocomposites. Nano-reinforcement alignment also increased greatly the fracture energy of the epoxy due to a higher fraction of the nano-reinforcement participating in multiple intrinsic (e.g. interfacial debonding and void growth) and extrinsic (e.g. pull-out and bridging) toughening mechanisms. A mechanistic model is presented to quantify the contributions from the different toughening mechanisms induced by CNFs and GNPs to the large improvements in fracture toughness. The model results show that one-dimensional CNFs are more effective than GNPs at increasing the intrinsic toughness of epoxy via void growth, whereas two-dimensional GNPs are more effective than CNFs at improving the extrinsic toughness via crack bridging and pull-out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent investigations on the non-linear (NL) dielectric properties of relaxor ferroelectrics systems, not only as ceramic bodies, but also, in thin films, have showed a significant technological and scientific interest. The most common practical applications of relaxors include multilayer capacitors and actuators. In this work, non-linear dielectric properties of hot-pressed (1-x)[Pb1 -(3/2) yLayMg1/3Nb2/3O3]-xPbTiO3 (PLMN-PT) ferroelectric ceramics were investigated. The NL properties were obtained by using the measurements of the dielectric permittivity of the material as a function of the AC electric field with variable amplitude in the frequency and temperature range of 100 Hz-1 MHz and 50-450 K, respectively. An anomalous behavior of the non-linear dielectric response was observed when submitted to high electric fields levels. The obtained results were analyzed concerning one of the models for the dielectric response of relaxors ferroelectrics materials currently discussed in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the nonlinear excitation of holographic gratings in a photorefractive crystal being subject to an alternating electric field and a stationary light interference pattern. The influence of the higher harmonics on the fundamental grating is illustrated for the case where a crystal of Bi12SiO20 is the recording medium. We analyze both the steady state and the transient consequences of the higher harmonic excitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the nonlinear excitation of holographic gratings in a photorefractive crystal being subject to an alternating electric field and a stationary light interference pattern. The influence of the higher harmonics on the fundamental grating is illustrated for the case where a crystal of Bi12SiO20 is the recording medium. We analyze both the steady state and the transient consequences of the higher harmonic excitation.