958 resultados para A* search algorithm
Resumo:
In this Comment on Feng's paper [Phys. Rev. A 63, 052308 (2001)], we show that Grover's algorithm may be performed exactly using the gate set given, provided that small changes are made to the gate sequence. An analytic expression for the probability of success of Grover's algorithm for any unitary operator U instead of Hadamard gate is presented.
Resumo:
Background: The multitude of motif detection algorithms developed to date have largely focused on the detection of patterns in primary sequence. Since sequence-dependent DNA structure and flexibility may also play a role in protein-DNA interactions, the simultaneous exploration of sequence-and structure-based hypotheses about the composition of binding sites and the ordering of features in a regulatory region should be considered as well. The consideration of structural features requires the development of new detection tools that can deal with data types other than primary sequence. Results: GANN ( available at http://bioinformatics.org.au/gann) is a machine learning tool for the detection of conserved features in DNA. The software suite contains programs to extract different regions of genomic DNA from flat files and convert these sequences to indices that reflect sequence and structural composition or the presence of specific protein binding sites. The machine learning component allows the classification of different types of sequences based on subsamples of these indices, and can identify the best combinations of indices and machine learning architecture for sequence discrimination. Another key feature of GANN is the replicated splitting of data into training and test sets, and the implementation of negative controls. In validation experiments, GANN successfully merged important sequence and structural features to yield good predictive models for synthetic and real regulatory regions. Conclusion: GANN is a flexible tool that can search through large sets of sequence and structural feature combinations to identify those that best characterize a set of sequences.
Resumo:
With the rapid increase in both centralized video archives and distributed WWW video resources, content-based video retrieval is gaining its importance. To support such applications efficiently, content-based video indexing must be addressed. Typically, each video is represented by a sequence of frames. Due to the high dimensionality of frame representation and the large number of frames, video indexing introduces an additional degree of complexity. In this paper, we address the problem of content-based video indexing and propose an efficient solution, called the Ordered VA-File (OVA-File) based on the VA-file. OVA-File is a hierarchical structure and has two novel features: 1) partitioning the whole file into slices such that only a small number of slices are accessed and checked during k Nearest Neighbor (kNN) search and 2) efficient handling of insertions of new vectors into the OVA-File, such that the average distance between the new vectors and those approximations near that position is minimized. To facilitate a search, we present an efficient approximate kNN algorithm named Ordered VA-LOW (OVA-LOW) based on the proposed OVA-File. OVA-LOW first chooses possible OVA-Slices by ranking the distances between their corresponding centers and the query vector, and then visits all approximations in the selected OVA-Slices to work out approximate kNN. The number of possible OVA-Slices is controlled by a user-defined parameter delta. By adjusting delta, OVA-LOW provides a trade-off between the query cost and the result quality. Query by video clip consisting of multiple frames is also discussed. Extensive experimental studies using real video data sets were conducted and the results showed that our methods can yield a significant speed-up over an existing VA-file-based method and iDistance with high query result quality. Furthermore, by incorporating temporal correlation of video content, our methods achieved much more efficient performance.
Resumo:
In a deregulated electricity market, optimizing dispatch capacity and transmission capacity are among the core concerns of market operators. Many market operators have capitalized on linear programming (LP) based methods to perform market dispatch operation in order to explore the computational efficiency of LP. In this paper, the search capability of genetic algorithms (GAs) is utilized to solve the market dispatch problem. The GA model is able to solve pool based capacity dispatch, while optimizing the interconnector transmission capacity. Case studies and corresponding analyses are performed to demonstrate the efficiency of the GA model.
Resumo:
This paper derives the performance union bound of space-time trellis codes in orthogonal frequency division multiplexing system (STTC-OFDM) over quasi-static frequency selective fading channels based on the distance spectrum technique. The distance spectrum is the enumeration of the codeword difference measures and their multiplicities by exhausted searching through all the possible error event paths. Exhaustive search approach can be used for low memory order STTC with small frame size. However with moderate memory order STTC and moderate frame size the computational cost of exhaustive search increases exponentially, and may become impractical for high memory order STTCs. This requires advanced computational techniques such as Genetic Algorithms (GAS). In this paper, a GA with sharing function method is used to locate the multiple solutions of the distance spectrum for high memory order STTCs. Simulation evaluates the performance union bound and the complexity comparison of non-GA aided and GA aided distance spectrum techniques. It shows that the union bound give a close performance measure at high signal-to-noise ratio (SNR). It also shows that GA sharing function method based distance spectrum technique requires much less computational time as compared with exhaustive search approach but with satisfactory accuracy.
Resumo:
A chip shooter machine for electronic component assembly has a movable feeder carrier, a movable XY table carrying a printed circuit board (PCB), and a rotary turret with multiple assembly heads. This paper presents a hybrid genetic algorithm (HGA) to optimize the sequence of component placements and the arrangement of component types to feeders simultaneously for a chip shooter machine, that is, the component scheduling problem. The objective of the problem is to minimize the total assembly time. The GA developed in the paper hybridizes different search heuristics including the nearest-neighbor heuristic, the 2-opt heuristic, and an iterated swap procedure, which is a new improved heuristic. Compared with the results obtained by other researchers, the performance of the HGA is superior in terms of the assembly time. Scope and purpose When assembling the surface mount components on a PCB, it is necessary to obtain the optimal sequence of component placements and the best arrangement of component types to feeders simultaneously in order to minimize the total assembly time. Since it is very difficult to obtain the optimality, a GA hybridized with several search heuristics is developed. The type of machines being studied is the chip shooter machine. This paper compares the algorithm with a simple GA. It shows that the performance of the algorithm is superior to that of the simple GA in terms of the total assembly time.
Resumo:
This paper presents a hybrid genetic algorithm to optimize the sequence of component placements on a printed circuit board and the arrangement of component types to feeders simultaneously for a pick-and-place machine with multiple stationary feeders, a fixed board table and a movable placement head. The objective of the problem is to minimize the total travelling distance, or the travelling time, of the placement head. The genetic algorithm developed in the paper hybrisizes different search heuristics including the nearest neighbor heuristic, the 2-opt heuristic, and an iterated swap procedure, which is a new improving heuristic. Compared with the results obtained by other researchers, the performance of the hybrid genetic algorithm is superior to others in terms of the distance travelled by the placement head.
Resumo:
Accelerated probabilistic modeling algorithms, presenting stochastic local search (SLS) technique, are considered. General algorithm scheme and specific combinatorial optimization method, using golden section rule (GS-method), are given. Convergence rates using Markov chains are received. An overview of current combinatorial optimization techniques is presented.
Resumo:
In this paper the technique of shorter route determination of fire engine to the fire place on time minimization criterion with the use of evolutionary modeling is offered. The algorithm of its realization on the base of complete and optimized space of search of possible decisions is explored. The aspects of goal function forming and program realization of method having a special purpose are considered. Experimental verification is executed and the results of comparative analysis with the expert conclusions are considered.
Resumo:
Background: Despite initial concerns about the sensitivity of the proposed diagnostic criteria for DSM-5 Autism Spectrum Disorder (ASD; e.g. Gibbs et al., 2012; McPartland et al., 2012), evidence is growing that the DSM-5 criteria provides an inclusive description with both good sensitivity and specificity (e.g. Frazier et al., 2012; Kent, Carrington et al., 2013). The capacity of the criteria to provide high levels of sensitivity and specificity comparable with DSM-IV-TR however relies on careful measurement to ensure that appropriate items from diagnostic instruments map onto the new DSM-5 descriptions.Objectives: To use an existing DSM-5 diagnostic algorithm (Kent, Carrington et .al., 2013) to identify a set of essential behaviors sufficient to make a reliable and accurate diagnosis of DSM-5 Autism Spectrum Disorder (ASD) across age and ability level. Methods: Specific behaviors were identified and tested from the recently published DSM-5 algorithm for the Diagnostic Interview for Social and Communication Disorders (DISCO). Analyses were run on existing DISCO datasets, with a total participant sample size of 335. Three studies provided step-by-step development towards identification of a minimum set of items. Study 1 identified the most highly discriminating items (p<.0001). Study 2 used a lower selection threshold than in Study 1 (p<.05) to facilitate better representation of the full DSM-5 ASD profile. Study 3 included additional items previously reported as significantly more frequent in individuals with higher ability. The discriminant validity of all three item sets was tested using Receiver Operating Characteristic curves. Finally, sensitivity across age and ability was investigated in a subset of individuals with ASD (n=190).Results: Study 1 identified an item set (14 items) with good discriminant validity, but which predominantly measured social-communication behaviors (11/14). The Study 2 item set (48 items) better represented the DSM-5 ASD and had good discriminant validity, but the item set lacked sensitivity for individuals with higher ability. The final Study 3 adjusted item set (54 items) improved sensitivity for individuals with higher ability and performance and was comparable to the published DISCO DSM-5 algorithm.Conclusions: This work represents a first attempt to derive a reduced set of behaviors for DSM-5 directly from an existing standardized ASD developmental history interview. Further work involving existing ASD diagnostic tools with community-based and well characterized research samples will be required to replicate these findings and exploit their potential to contribute to a more efficient and focused ASD diagnostic process.
Resumo:
The problem of finding the optimal join ordering executing a query to a relational database management system is a combinatorial optimization problem, which makes deterministic exhaustive solution search unacceptable for queries with a great number of joined relations. In this work an adaptive genetic algorithm with dynamic population size is proposed for optimizing large join queries. The performance of the algorithm is compared with that of several classical non-deterministic optimization algorithms. Experiments have been performed optimizing several random queries against a randomly generated data dictionary. The proposed adaptive genetic algorithm with probabilistic selection operator outperforms in a number of test runs the canonical genetic algorithm with Elitist selection as well as two common random search strategies and proves to be a viable alternative to existing non-deterministic optimization approaches.
Resumo:
In this paper a variable neighborhood search (VNS) approach for the task assignment problem (TAP) is considered. An appropriate neighborhood scheme along with a shaking operator and local search procedure are constructed specifically for this problem. The computational results are presented for the instances from the literature, and compared to optimal solutions obtained by the CPLEX solver and heuristic solutions generated by the genetic algorithm. It can be seen that the proposed VNS approach reaches all optimal solutions in a quite short amount of computational time.
Resumo:
The objective of this study was to identify a set of 'essential' behaviours sufficient for diagnosis of DSM-5 Autism Spectrum Disorder (ASD). Highly discriminating, 'essential' behaviours were identified from the published DSM-5 algorithm developed for the Diagnostic Interview for Social and Communication Disorders (DISCO). Study 1 identified a reduced item set (48 items) with good predictive validity (as measured using receiver operating characteristic curves) that represented all symptom sub-domains described in the DSM-5 ASD criteria but lacked sensitivity for individuals with higher ability. An adjusted essential item set (54 items; Study 2) had good sensitivity when applied to individuals with higher ability and performance was comparable to the published full DISCO DSM-5 algorithm. Investigation at the item level revealed that the most highly discriminating items predominantly measured social-communication behaviours. This work represents a first attempt to derive a reduced set of behaviours for DSM-5 directly from an existing standardised ASD developmental history interview and has implications for the use of DSM-5 criteria for clinical and research practice. 2014 The Authors.
Resumo:
This paper presents a Variable neighbourhood search (VNS) approach for solving the Maximum Set Splitting Problem (MSSP). The algorithm forms a system of neighborhoods based on changing the component for an increasing number of elements. An efficient local search procedure swaps the components of pairs of elements and yields a relatively short running time. Numerical experiments are performed on the instances known in the literature: minimum hitting set and Steiner triple systems. Computational results show that the proposed VNS achieves all optimal or best known solutions in short times. The experiments indicate that the VNS compares favorably with other methods previously used for solving the MSSP. ACM Computing Classification System (1998): I.2.8.
Resumo:
This work contributes to the development of search engines that self-adapt their size in response to fluctuations in workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computational resources to or from the engine. In this paper, we focus on the problem of regrouping the metric-space search index when the number of virtual machines used to run the search engine is modified to reflect changes in workload. We propose an algorithm for incrementally adjusting the index to fit the varying number of virtual machines. We tested its performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud, while calibrating the results to compensate for the performance fluctuations of the platform. Our experiments show that, when compared with computing the index from scratch, the incremental algorithm speeds up the index computation 210 times while maintaining a similar search performance.