787 resultados para 893
Resumo:
A rare mu(6)-oxo-centered Mn-6 mixed-valent cluster (1) is prepared and used as a secondary building unit for the self-assembly of its azido-bridged polymeric analogue (2) in a systematic way with the retention of the Mn-6 core of (1). Both complexes are characterized by X-ray single-crystal structure determination. The complex 1 was crystallized in a monoclinic system, space group P2(1), a = 11.252(5) A, b = 20.893(9) A, c = 12.301(6) A, and beta = 115.853(7)degrees, whereas the polymeric analogue was crystallized in an orthorhombic system, space group P2(1)2(1)2(1), a = 13.1941(8) A, b = 14.9897(9) A, and c = 27.8746(14) A. Variable-temperature magnetic behavior showed the presence of strong antiferromagnetic interaction in both cases.
Resumo:
Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase.
Resumo:
The effect of a warmer climate on the properties of extra-tropical cyclones is investigated using simulations of the ECHAM5 global climate model at resolutions of T213 (60 km) and T319 (40 km). Two periods representative of the end of the 20th and 21st centuries are investigated using the IPCC A1B scenario. The focus of the paper is on precipitation for the NH summer and winter seasons, however results from vorticity and winds are also presented. Similar number of events are identified at both resolutions. There are, however, a greater number of extreme precipitation events in the higher reso- lution run. The difference between maximum intensity distributions are shown to be statistically significant using a Kolmogorov-Smirnov test. A Generalised Pareto Distribution is used to analyse changes in extreme precipitation and wind events. In both resolutions, there is an increase in the number of ex- treme precipitation events in a warmer climate for all seasons, together with a reduction in return period. This is not associated with any increased verti- cal velocity, or with any increase in wind intensity in the winter and spring. However, there is an increase in wind extremes in the summer and autumn associated with tropical cyclones migrating into the extra-tropics.
Resumo:
Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase
Resumo:
The evolution of the global orientation parameter for a series of aqueous hydroxypropylcellulose solutions both during and following the cessation of a steady-state shear flow is reported. Time-resolved orientation measurements were made in situ through a novel X-ray rheometer coupled with a two-dimensional electronic X-ray camera, and using an intense X-ray source at the LURE synchrotron. After the cessation of flow, the global orientation decreases from the steady-state orientation level to zero following shear flow at low shear rate or to a small but finite value after flow at a high shear rate. The decrease of orientation with time shows different behaviour, dependent upon the previously applied shear rate.
Resumo:
In the European Union, first-tier assessment of the long-term risk to birds and mammals from pesticides is based on calculation of a deterministic long-term toxicity/exposure ratio(TERlt). The ratio is developed from generic herbivores and insectivores and applied to all species. This paper describes two case studies that implement proposed improvements to the way long-term risk is assessed. These refined methods require calculation of a TER for each of five identified phases of reproduction (phase-specific TERs) and use of adjusted No Observed Effect Levels (NOELs)to incorporate variation in species sensitivity to pesticides. They also involve progressive refinement of the exposure estimate so that it applies to particular species, rather than generic indicators, and relates spraying date to onset of reproduction. The effect of using these new methods on the assessment of risk is described. Each refinement did not necessarily alter the calculated TER value in a way that was either predictable or consistent across both case studies. However, use of adjusted NOELs always reduced TERs, and relating spraying date to onset of reproduction increased most phase-specific TERs. The case studies suggested that the current first-tier TERlt assessment may underestimate risk in some circumstances and that phase-specific assessments can help identify appropriate risk-reduction measures. The way in which deterministic phase-specific assessments can currently be implemented to enhance first-tier assessment is outlined.
Resumo:
This study documents the size and nature of “Hindu-Muslim” and “boy-girl” gaps in children’s school participation and attainments in India. Individual-level data from two successive rounds of the National Sample Survey suggest that considerable progress has been made in decreasing the Hindu-Muslim gap. Nonetheless, the gap remains sizable even after controlling for numerous socio-economic and parental covariates, and the Muslim educational disadvantage in India today is greater than that experienced by girls and Scheduled Caste Hindu children. A gender gap still appears within as well as between communities, though it is smaller within Muslim communities. While differences in gender and other demographic and socio-economic covariates have recently become more important in explaining the Hindu-Muslim gap, those differences altogether explain only 25 percent to 45 percent of the observed schooling gap.
Resumo:
This study examines the variability of the South America monsoon system (SAMS) over tropical South America (SA). The onset, end, and total rainfall during the summer monsoon are investigated using precipitation pentad estimates from the global precipitation climatology project (GPCP) 1979-2006. Likewise, the variability of SAMS characteristics is examined in ten Intergovernmental Panel on Climate Change (IPCC) global coupled climate models in the twentieth century (1981-2000) and in a future scenario of global change (A1B) (2081-2100). It is shown that most IPCC models misrepresent the intertropical convergence zone and therefore do not capture the actual annual cycle of precipitation over the Amazon and northwest SA. Most models can correctly represent the spatiotemporal variability of the annual cycle of precipitation in central and eastern Brazil such as the correct phase of dry and wet seasons, onset dates, duration of rainy season and total accumulated precipitation during the summer monsoon for the twentieth century runs. Nevertheless, poor representation of the total monsoonal precipitation over the Amazon and northeast Brazil is observed in a large majority of the models. Overall, MI-ROC3.2-hires, MIROC3.2-medres and MRI-CGCM3.2.3 show the most realistic representation of SAMS`s characteristics such as onset, duration, total monsoonal precipitation, and its interannual variability. On the other hand, ECHAM5, GFDL-CM2.0 and GFDL-CM2.1 have the least realistic representation of the same characteristics. For the A1B scenario the most coherent feature observed in the IPCC models is a reduction in precipitation over central-eastern Brazil during the summer monsoon, comparatively with the present climate. The IPCC models do not indicate statistically significant changes in SAMS onset and demise dates for the same scenario.
Resumo:
We consider a Moyal plane and propose to make the noncommutativity parameter Theta(mu nu) bifermionic, i.e. composed of two fermionic (Grassmann odd) parameters. The Moyal product then contains a finite number of derivatives, which avoid the difficulties of the standard approach. As an example, we construct a two-dimensional noncommutative field theory model based on the Moyal product with a bifermionic parameter and show that it has a locally conserved energy-momentum tensor. The model has no problem with the canonical quantization and appears to be renormalizable.
Resumo:
Energy transfer processes were studied in two sets of Yb3+ and Tm3+ co-doped sodium-metaphosphate glasses, prepared in air and nitrogen atmospheres. Using Forster, Dexter, and Miyakawa theoretical models, the energy transfer parameters were calculated. The main ion-ion energy transfer processes analyzed were energy migration among Yb3+ ions, cross-relaxations between Yb3+ and Tm3+ ions, and interactions with OH- radicals. The results indicated that Yb -> Tm energy transfer favors 1.8 mu m emissions, and there is no evidence of concentration quenching up to 2% Tm2O3 doping. As expected, samples prepared in nitrogen atmosphere present higher fluorescence quantum efficiency than those prepared in air, and this feature is specially noted in the near-infrared region, where the interaction with the OH- radicals is more pronounced. (c) 2007 Published by Elsevier B.V.
Resumo:
To shed more light on the molecular requirements for recognition of thyroid response elements (TRES) by thyroid receptors (TRs), we compared the specific aspects of DNA TRE recognition by different TR constructs. Using fluorescence anisotropy, we performed a detailed and hierarchical study of TR-TRE binding. This wits done by comparing the binding affinities of three different TR constructs for four different TRE DNA elements, including palindromic sequences and direct repeats (F2, PAL, DR-1, and DR-4) as well as their interactions with nonspecific DNA sequences. The effect of MgCl(2) on suppressing of nonselective DNA binding to TR was also investigated. Furthermore, we determined the dissociation constants of the hTR beta DBD (DNA binding domain) and hTR beta DBD-LBD (DNA binding and ligand binding domains) for specific TRES. We found that a minimum DNA recognition peptide derived from DBD (H1TR) is sufficient for recognition and interaction with TREs, whereas scrambled DNA sequences were unrecognized. Additionally, we determined that the TR DBD binds to F2, PAL, and DR-4 with high affinity and similar K(d) values. The TR DBD-LBD recognizes all the tested TRES but binds preferentially to F2, with even higher affinity. Finally, our results demonstrate the important role played by LBDs in modulating TR-DNA binding.
Resumo:
Absorption and fluorescence spectroscopy, electrochemical techniques, and semiempirical calculations were employed to characterize the multiple complexation equilibria between two polymethine cyanine dyes (IR-786 and Indocyanine green-ICG, 5) and beta-cyclodextrin (beta-CD, L), as well as the chemical reactivity of the complexed and uncomplexed species against the oxidizing agents hypochlorite (HC) and hydrogen peroxide (HP). IR-786 dimerization is favored with the increase in beta-CD concentration in the form of (SL)(2) complexes. In the case of ICG, free dimers (D) and SL complexes are favored. Both IR-786 and ICG react and discolor in the presence of HC and HP. For IR-786, the reaction with HP and HC proceeds with observed rate constants of 10(-3) and 0.28 s(-1) and second-order rate constants (k(2)) of similar to 10(-3) and 10(4) M(-1) s(-1), respectively. The intermediate species observed in the bleaching reactions of IR-786 and ICG were shown, by cyclic voltammetry and VIS absorption, to result from one electron oxidation. IR-786 complexed with beta-CD is protected against bleaching in the presence of HP and HC by factors of 20 and 4, respectively. This protection was not observed in ICG complexes. Superdelocalizability profile of both dyes and frontier orbital analysis indicates that beta-CD does not protect ICG from oxidation by HP or HC, whereas the 2:2 IR-786/beta-Cd complex is able to avoid the oxidation of IR-786. We concluded that the decrease in the chemical reactivity of the dyes against oxidant agents in the presence of beta-CD is due to the formation of (SL)(2) complexes. Copyright (C) 2010 John Wiley & Sons, Ltd.