985 resultados para 60-455
Resumo:
Vegetation is very sensitive to climate change. Carbon isotopes in paleosol have been widely used to contruct the propotion of plants using C3 and C4 photosynthetic pathways. δ13C of Loess organic matter were analyzed on the loess- paleosols samples from Jingchuan sections and Luochuan S4—S5 sequence. This paper presents a long carbon isotope time series, covering the last 600kyr. δ13C record of Loess organic matter in Jingchuan is correlated with marine oxygen isotope records. Basing on former research work, this paper discusses temperature, rainfall and P CO2 effect on δ13Corg value. In the interglacial periods, carbon isotope is more sensitive than other proxies and indicates several climate fluctuations. The main conclusions are as follows: 1. Obtained δ13C composition from paleosols and loess sediments in Jingchuan range of -20.0‰ to -24.6‰, the maximum biomass of C4 is 35%, indicating a C3 and C4 mixed steppe with C3 dominated. C4 plant is not always expansion during paleosols periods. The minimum values of Jingchuan section appeared in S4 soil, and the vegetation was almost pure C3 plant at that time. δ13Corg value in S5-2 is also lower than loess in S5, reaching the minimum valus of S5 soil. 2. PCO2 variation has little impact on δ13Corg value in interglacial periods for the last 600kyr. The correlation between δ13Corg value curve and magnetic susceptibility curve as proxy of summer monsoon in general, means summer monsoon drive C4 plant expansion during glacial and interglacial. 3. The lowerδ13Corg values in S4 and S5-2 appear at Jingchuan and Luochuan, suggest origin from woodland or C3 grassland. Whatever vegetation it is, indicate strengthened East Asian summer monsoon and increase of precipitation. C4 plant percentage is lower in S5-1 and S1 which have stronger summer monsoon, than S0 and S2. And it also indicates increase of precipitation.δ13Corg values has not always non-linearity correlation with summer monsoon. 4. The maximum entroy spectral analysis of δ13C values of the last 600kyr indicates there is 21 kyr cycles in Loess sequence. It means that summer monsoon in the Chinese Loess Plateau also has the precession cycles like its origin low latitude.
Resumo:
This thesis is concerned with an investigation of the anodic behaviour of ruthenium and iridium in aqueous solution and particularly of oxygen evolution on these metals. The latter process is of major interest in the large-scale production of hydrogen gas by the electrolysis of water. The presence of low levels of ruthenium trichloride ca. 10-4 mol dm-3 in acid solution give a considerable increase in the rate of oxygen evolution from platinum and gold, but not graphite, anodes. The mechanism of this catalytic effect was investigated using potential step and a.c. impedance technique. Earlier suggestions that the effect is due to catalysis by metal ions in solution were proved to be incorrect and it was shown that ruthenium species were incorporated into the surface oxide film. Changes in the oxidation state of these ruthenium species is probably responsible for the lowering of the oxygen overvoltage. Both the theoretical and practical aspects of the reaction were complicated by the fact that at constant potential the rates of both the catalysed and the uncatalysed oxygen evolution processes exhibit an appreciable, continuous decrease with either time or degree of oxidation of the substrate. The anodic behaviour of iridium in the oxide layer region has been investigated using conventional electrochemical techniques such as cyclic voltammetry. Applying a triangular voltage sweep at 10 Hz, 0.01 to 1.50V increases the amount of electric charge which the surface can store in the oxide region. This activation effect and the mechanism of charge storage is discussed in terms of both an expanded lattice theory for oxide growth on noble metals and a more recent theory of irreversible oxide formation with subsequent stoichiometry changes. The lack of hysteresis between the anodic and cathodic peaks at ca. 0.9 V suggests that the process involved here is proton migration in a relatively thick surface layer, i.e. that the reaction involved is some type of oxide-hydroxide transition. Lack of chloride ion inhibition in the anodic region also supports the irreversible oxide formation theory; however, to account for the hydrogen region of the potential sweep a compromise theory involving partial reduction of the outer regions of iridium oxide film is proposed. The loss of charge storage capacity when the activated iridium surface is anodized for a short time above ca. 1.60 V is attributed to loss by corrosion of the outer active layer from the metal surface. The behaviour of iridium at higher anodic potentials in acid solution was investigated. Current-time curves at constant potential and Tafel plots suggested that a change in the mechanism of the oxygen evolution reaction occurs at ca. 1.8 V. Above this potential, corrosion of the metal occurred, giving rise to an absorbance in the visible spectrum of the electrolyte (λ max = 455 nm). It is suggested that the species involved was Ir(O2)2+. A similar investigation in the case of alkaline electrolyte gave no evidence for a change in mechanism at 1.8 V and corrosion of the iridium was not observed. Oxygen evolution overpotentials were much lower for iridium than for platinum in both acidic and alkaline solutions.
Resumo:
A fern from the French Pyrenees-×Cystocarpium roskamianum-is a recently formed intergeneric hybrid between parental lineages that diverged from each other approximately 60 million years ago (mya; 95% highest posterior density: 40.2-76.2 mya). This is an extraordinarily deep hybridization event, roughly akin to an elephant hybridizing with a manatee or a human with a lemur. In the context of other reported deep hybrids, this finding suggests that populations of ferns, and other plants with abiotically mediated fertilization, may evolve reproductive incompatibilities more slowly, perhaps because they lack many of the premating isolation mechanisms that characterize most other groups of organisms. This conclusion implies that major features of Earth's biodiversity-such as the relatively small number of species of ferns compared to those of angiosperms-may be, in part, an indirect by-product of this slower "speciation clock" rather than a direct consequence of adaptive innovations by the more diverse lineages.
Resumo:
The generation of a spatially single-mode white-light supercontinuum has been observed in a photonic crystal fiber pumped with 60-ps pulses of subkilowatt peak power. The spectral broadening is identified as being due to the combined action of stimulated Raman scattering and parametric four-wave-mixing generation, with a negligible contribution from the self-phase modulation of the pump pulses. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate that ultrafast femtosecond pulses are not needed for efficient supercontinuum generation in photonic crystal fibers. © 2001 Optical Society of America.
Resumo:
info:eu-repo/semantics/published
Resumo:
This paper examines the influence of exit separation, exit availability and seating configuration on aircraft evacuation efficiency and evacuation time. The purpose of this analysis is to explore how these parameters influence the 60 foot exit separation requirement found in aircraft certification rules. The analysis makes use of the airEXODUS evacuation model and is based on a typical wide-body aircraft cabin section involving two pairs of Type-A exits located at either end of the section with a maximum permissible loading of 220 passengers located between the exits. The analysis reveals that there is a complex relationship between exit separation and evacuation efficiency. Indeed, other factors such as exit flow rate and exit availability are shown to exert a strong influence on critical exit separations. A main finding of this work is that for the cabin section examined under certification conditions, exit separations up to 170 feet will result in approximately constant total evacuation times and average personal evacuation times. This practical exit separation threshold is decreased to 114 feet if another combination of exits is selected. While other factors must also be considered when determining maximum allowable exit separations, these results suggest it is not possible to mandate a maximum exit separation without taking into consideration exit type, exit availability and aircraft configuration. This has implications when determining maximum allowable exit separations for wide and narrow body aircraft. It is also relevant when considering the maximum allowable separation between different exit types on a given aircraft configuration.
Resumo:
Purpose: Nicardipine is a member of a family of calcium channel blockers named dihydropiridines that are known to be photolabile and may cause phototoxicity. It is therefore vital to develop analytical method which can study the photodegradation of nicardipine. Method: Forced acid degradation of nicardipine was conducted by heating 12 ml of 1 mg/ml nicardipine with 3 ml of 2.5 M HCl for two hours. A gradient HPLC medthod was developed using Agilent Technologies 1200 series quaternary system. Separation was achieved with a Hichrome (250 x 4.6 mm) 5 μm C18 reversed phase column and mobile phase composition of 70% A(100%v/v water) and 30% B(99%v/v acetonitrile + 1%v/v formic acid) at time zero, composition of A and B was then charged to 60%v/v A;40%v/v B at 10minutes, 50%v/v A; 50%v/v B at 30minutes and 70%v/v A; 30%v/v B at 35minutes. 20μl of 0.8mg/ml of nicardipine degradation was injected at room temperature (25oC). The gradient method was transferred onto a HPLC-ESI-MS system (HP 1050 series - AQUAMAX mass detector) and analysis conducted with an acid degradation concentration of 0.25mg/ml and 20μl injection volume. ESI spectra were acquired in positive ionisation mode with MRM 0-600 m/z. Results: Eleven nicardipine degradation products were detected in the HPLC analysis and the resolution (RS) between the respective degradants where 1.0, 1.2, 6.0, 0.4, 1.7, 3.7, 1.8, 1.0, and 1.7 respectively. Nine degradation products were identified in the ESI spectra with the respective m/z ratio; 171.0, 166.1, 441.2, 423.2, 455.2, 455.2, 331.1, 273.1, and 290.1. The possible molecular formulae for each degradants were ambiguously determined. Conclusion: A sensitive and specific method was developed for the analysis of nicardipine degradants. Method enables detection and quantification of nicardipine degradation products that can be used for the study of the kinetics of nicardipine degradation processes.
Resumo:
In the mid-1980s the North Sea ecosystem experienced a climate-induced regime shift that has favoured decapods and detritivores in the benthos and jellyfish in the plankton over commercial fisheries. Here, we investigate changes among the Decapoda in the North Sea plankton over the last 60 yr. Decapods are important predators in the plankton and the benthos where they can influence productivity and structure communities. In the North Sea it has been suggested that a climate-driven increase in decapod abundance has been important in propagating the climate signal through the North Sea food web. We show that climate-induced changes in the Decapoda in the central and southern North Sea include the presence of new warm-water taxa, changes in the abundance and proportions of commercial species of shrimp, and an earlier occurrence of decapod larvae in the plankton compared with the period 1981–1983. Notable amongst the warm-water taxa appearing in the North Sea is the predatory swimming crab Polybius henslowii that can swarm in large numbers when conditions are favourable and that is known to exhibit range shifts in response to fluctuations in hydroclimatic forcing. We suggest that climate-induced changes among North Sea decapods have played an important role in the trophic amplification of a climate signal and the development of the new North Sea dynamic regime. Understanding these changes is likely to be imperative for a successful ecosystem-based approach to the future management of North Sea fisheries at a time of climate change.