969 resultados para 3D dose distribution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present an algorithm for full-wave electromagnetic analysis of nanoplasmonic structures. We use the three-dimensional Method of Moments to solve the electric field integral equation. The computational algorithm is developed in the language C. As examples of application of the code, the problems of scattering from a nanosphere and a rectangular nanorod are analyzed. The calculated characteristics are the near field distribution and the spectral response of these nanoparticles. The convergence of the method for different discretization sizes is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Odontologia - FOA

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of short implants is relevant to the biomechanics of dental implants, and research on crown increase has implications for the daily clinic. The aim of this study was to analyze the biomechanical interactions of a singular implant-supported prosthesis of different crown heights under vertical and oblique force, using the 3-D finite element method. Six 3-D models were designed with Invesalius 3.0, Rhinoceros 3D 4.0, and Solidworks 2010 software. Each model was constructed with a mandibular segment of bone block, including an implant supporting a screwed metal-ceramic crown. The crown height was set at 10, 12.5, and 15 mm. The applied force was 200 N (axial) and 100 N (oblique). We performed an ANOVA statistical test and Tukey tests; p < 0.05 was considered statistically significant. The increase of crown height did not influence the stress distribution on screw prosthetic (p > 0.05) under axial load. However, crown heights of 12.5 and 15 mm caused statistically significant damage to the stress distribution of screws and to the cortical bone (p <0.001) under oblique load. High crown to implant (C/I) ratio harmed microstrain distribution on bone tissue under axial and oblique loads (p < 0.001). Crown increase was a possible deleterious factor to the screws and to the different regions of bone tissue. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the influence of the geometry and design of prosthetic crown preparations on stress distribution in compression tests, using finite element analysis (FEA). Materials and Methods: Six combinations of 3D drawings of all-ceramic crowns (yttria-stabilized zirconia framework and porcelain veneer) were evaluated: F, flat preparation and simplified crown; FC, flat preparation and crown with contact point; FCM, flat preparation and modified crown; A, anatomical preparation and simplified anatomical crown framework; AC, anatomical preparation and crown with contact point; and ACM, anatomical preparation and modified crown. Bonded contact types at all interfaces with the mesh were assigned, and the material properties used were according to the literature. A 200 N vertical load was applied at the center of each model. The maximum principal stresses were quantitatively and qualitatively analyzed. Results: The highest values of tensile stress were observed at the interface between the ceramics in the region under the load application for the simplified models (F and A). Reductions in stress values were observed for the model with the anatomical preparation and modified infrastructure (ACM). The stress distribution in the flat models was similar to that of their respective anatomical models. Conclusions: The modified design of the zirconia coping reduces the stress concentration at the interface with the veneer ceramic, and the simplified preparation can exert a stress distribution similar to that of the anatomical preparation at and near the load point, when load is applied to the center of the crown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)