920 resultados para 280208 Computer Vision


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intelligent surveillance systems typically use a single visual spectrum modality for their input. These systems work well in controlled conditions, but often fail when lighting is poor, or environmental effects such as shadows, dust or smoke are present. Thermal spectrum imagery is not as susceptible to environmental effects, however thermal imaging sensors are more sensitive to noise and they are only gray scale, making distinguishing between objects difficult. Several approaches to combining the visual and thermal modalities have been proposed, however they are limited by assuming that both modalities are perfuming equally well. When one modality fails, existing approaches are unable to detect the drop in performance and disregard the under performing modality. In this paper, a novel middle fusion approach for combining visual and thermal spectrum images for object tracking is proposed. Motion and object detection is performed on each modality and the object detection results for each modality are fused base on the current performance of each modality. Modality performance is determined by comparing the number of objects tracked by the system with the number detected by each mode, with a small allowance made for objects entering and exiting the scene. The tracking performance of the proposed fusion scheme is compared with performance of the visual and thermal modes individually, and a baseline middle fusion scheme. Improvement in tracking performance using the proposed fusion approach is demonstrated. The proposed approach is also shown to be able to detect the failure of an individual modality and disregard its results, ensuring performance is not degraded in such situations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The application of high-speed machine vision for close-loop position control, or visual servoing, of a robot manipulator. It provides a comprehensive coverage of all aspects of the visual servoing problem: robotics, vision, control, technology and implementation issues. While much of the discussion is quite general the experimental work described is based on the use of a high-speed binary vision system with a monocular "eye-in-hand" camera.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In public venues, crowd size is a key indicator of crowd safety and stability. In this paper we propose a crowd counting algorithm that uses tracking and local features to count the number of people in each group as represented by a foreground blob segment, so that the total crowd estimate is the sum of the group sizes. Tracking is employed to improve the robustness of the estimate, by analysing the history of each group, including splitting and merging events. A simplified ground truth annotation strategy results in an approach with minimal setup requirements that is highly accurate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Maintenance trains travel in convoy. In Australia, only the first train of the convoy pays attention to the track sig- nalization (the other convoy vehicles simply follow the preceding vehicle). Because of human errors, collisions can happen between the maintenance vehicles. Although an anti-collision system based on a laser distance meter is already in operation, the existing system has a limited range due to the curvature of the tracks. In this paper, we introduce an anti-collision system based on vision. The two main ideas are, (1) to warp the camera image into an image where the rails are parallel through a projective transform, and (2) to track the two rail curves simultaneously by evaluating small parallel segments. The performance of the system is demonstrated on an image dataset.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The task addressed in this thesis is the automatic alignment of an ensemble of misaligned images in an unsupervised manner. This application is especially useful in computer vision applications where annotations of the shape of an object of interest present in a collection of images is required. Performing this task manually is a slow, tedious, expensive and error prone process which hinders the progress of research laboratories and businesses. Most recently, the unsupervised removal of geometric variation present in a collection of images has been referred to as congealing based on the seminal work of Learned-Miller [21]. The only assumption made in congealing is that the parametric nature of the misalignment is known a priori (e.g. translation, similarity, a�ne, etc) and that the object of interest is guaranteed to be present in each image. The capability to congeal an ensemble of misaligned images stemming from the same object class has numerous applications in object recognition, detection and tracking. This thesis concerns itself with the construction of a congealing algorithm titled, least-squares congealing, which is inspired by the well known image to image alignment algorithm developed by Lucas and Kanade [24]. The algorithm is shown to have superior performance characteristics when compared to previously established methods: canonical congealing by Learned-Miller [21] and stochastic congealing by Z�ollei [39].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Camera calibration information is required in order for multiple camera networks to deliver more than the sum of many single camera systems. Methods exist for manually calibrating cameras with high accuracy. Manually calibrating networks with many cameras is, however, time consuming, expensive and impractical for networks that undergo frequent change. For this reason, automatic calibration techniques have been vigorously researched in recent years. Fully automatic calibration methods depend on the ability to automatically find point correspondences between overlapping views. In typical camera networks, cameras are placed far apart to maximise coverage. This is referred to as a wide base-line scenario. Finding sufficient correspondences for camera calibration in wide base-line scenarios presents a significant challenge. This thesis focuses on developing more effective and efficient techniques for finding correspondences in uncalibrated, wide baseline, multiple-camera scenarios. The project consists of two major areas of work. The first is the development of more effective and efficient view covariant local feature extractors. The second area involves finding methods to extract scene information using the information contained in a limited set of matched affine features. Several novel affine adaptation techniques for salient features have been developed. A method is presented for efficiently computing the discrete scale space primal sketch of local image features. A scale selection method was implemented that makes use of the primal sketch. The primal sketch-based scale selection method has several advantages over the existing methods. It allows greater freedom in how the scale space is sampled, enables more accurate scale selection, is more effective at combining different functions for spatial position and scale selection, and leads to greater computational efficiency. Existing affine adaptation methods make use of the second moment matrix to estimate the local affine shape of local image features. In this thesis, it is shown that the Hessian matrix can be used in a similar way to estimate local feature shape. The Hessian matrix is effective for estimating the shape of blob-like structures, but is less effective for corner structures. It is simpler to compute than the second moment matrix, leading to a significant reduction in computational cost. A wide baseline dense correspondence extraction system, called WiDense, is presented in this thesis. It allows the extraction of large numbers of additional accurate correspondences, given only a few initial putative correspondences. It consists of the following algorithms: An affine region alignment algorithm that ensures accurate alignment between matched features; A method for extracting more matches in the vicinity of a matched pair of affine features, using the alignment information contained in the match; An algorithm for extracting large numbers of highly accurate point correspondences from an aligned pair of feature regions. Experiments show that the correspondences generated by the WiDense system improves the success rate of computing the epipolar geometry of very widely separated views. This new method is successful in many cases where the features produced by the best wide baseline matching algorithms are insufficient for computing the scene geometry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uncooperative iris identification systems at a distance and on the move often suffer from poor resolution and poor focus of the captured iris images. The lack of pixel resolution and well-focused images significantly degrades the iris recognition performance. This paper proposes a new approach to incorporate the focus score into a reconstruction-based super-resolution process to generate a high resolution iris image from a low resolution and focus inconsistent video sequence of an eye. A reconstruction-based technique, which can incorporate middle and high frequency components from multiple low resolution frames into one desired super-resolved frame without introducing false high frequency components, is used. A new focus assessment approach is proposed for uncooperative iris at a distance and on the move to improve performance for variations in lighting, size and occlusion. A novel fusion scheme is then proposed to incorporate the proposed focus score into the super-resolution process. The experiments conducted on the The Multiple Biometric Grand Challenge portal database shows that our proposed approach achieves an EER of 2.1%, outperforming the existing state-of-the-art averaging signal-level fusion approach by 19.2% and the robust mean super-resolution approach by 8.7%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wireless Multi-media Sensor Networks (WMSNs) have become increasingly popular in recent years, driven in part by the increasing commoditization of small, low-cost CMOS sensors. As such, the challenge of automatically calibrating these types of cameras nodes has become an important research problem, especially for the case when a large quantity of these type of devices are deployed. This paper presents a method for automatically calibrating a wireless camera node with the ability to rotate around one axis. The method involves capturing images as the camera is rotated and computing the homographies between the images. The camera parameters, including focal length, principal point and the angle and axis of rotation can then recovered from two or more homographies. The homography computation algorithm is designed to deal with the limited resources of the wireless sensor and to minimize energy con- sumption. In this paper, a modified RANdom SAmple Consensus (RANSAC) algorithm is proposed to effectively increase the efficiency and reliability of the calibration procedure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Within a surveillance video, occlusions are commonplace, and accurately resolving these occlusions is key when seeking to accurately track objects. The challenge of accurately segmenting objects is further complicated by the fact that within many real-world surveillance environments, the objects appear very similar. For example, footage of pedestrians in a city environment will consist of many people wearing dark suits. In this paper, we propose a novel technique to segment groups and resolve occlusions using optical flow discontinuities. We demonstrate that the ratio of continuous to discontinuous pixels within a region can be used to locate the overlapping edges, and incorporate this into an object tracking framework. Results on a portion of the ETISEO database show that the proposed algorithm results in improved tracking performance overall, and improved tracking within occlusions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a novel method for integrating GPS position estimates with position and attitude estimates derived from visual odometry using a scheme similar to a classic loosely-coupled GPS/INS integration. Under such an arrangement, we derive the error dynamics of the system and develop a Kalman Filter for estimating the errors in position and attitude. Using a control-based approach to observability, we show that the errors in both position and attitude (including yaw) are fully observable when there is a component of acceleration perpendicular to the velocity vector in the navigation frame. Numerical simulations are performed to confirm the observability analysis.